Maximum entropy inverse reinforcement learning-based trajectory planning for autonomous driving

强化学习 弹道 计算机科学 最大熵原理 反向 熵(时间箭头) 人工智能 数学 物理 几何学 量子力学 天文
作者
Peng Zhang,Sihong Xie,Xing Lv,Zhihui Zhong,Qing Li
标识
DOI:10.1117/12.3026671
摘要

With the rapid advancement of autonomous driving technology, effective trajectory planning has become crucial for ensuring road safety and driving efficiency. Traditional trajectory planning methods often rely on preset rules and models, making them ill-suited for the complex and dynamic traffic environment. To address this, a Maximum Entropy Inverse Reinforcement Learning (MaxEnt IRL) based trajectory planning method is proposed in this paper, aiming at learning from expert driving behaviors to infer an efficient reward function, which in turn guides decision-making and path planning for autonomous vehicles. This study begins by analyzing expert driving data to extract key state and action features. Then, the MaxEnt IRL algorithm is applied to learn the reward function underlying these features, reflecting the decision-making logic of expert drivers. The learned reward function is subsequently used to guide the trajectory planning of the autonomous driving system, generating safe and efficient driving paths. A series of experiments conducted in a simulated environment demonstrate that the MaxEnt IRL-based method proposed in this paper exhibits higher adaptability and efficiency in handling complex traffic scenarios compared to traditional trajectory planning methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
清晨牛完成签到,获得积分10
4秒前
科研通AI6应助比奇堡力工采纳,获得10
5秒前
5秒前
落后的嚓茶完成签到,获得积分20
5秒前
哈哈哈完成签到,获得积分20
6秒前
pose关注了科研通微信公众号
7秒前
汪蔓蔓完成签到 ,获得积分10
7秒前
哈罗发布了新的文献求助10
7秒前
jiaheyuan发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
隐形曼青应助yyx164采纳,获得10
8秒前
Revision完成签到,获得积分10
8秒前
科研通AI6应助李珅玥采纳,获得30
8秒前
9秒前
9秒前
gfjh完成签到,获得积分10
10秒前
11秒前
舒适傲白发布了新的文献求助10
11秒前
水泥酱发布了新的文献求助100
11秒前
浮游应助陶醉采纳,获得10
12秒前
薄荷味完成签到,获得积分10
12秒前
L1q完成签到,获得积分10
12秒前
无极微光应助舒适的半芹采纳,获得20
12秒前
小小Li完成签到,获得积分10
13秒前
马老师发布了新的文献求助10
13秒前
执着秋白完成签到,获得积分10
14秒前
14秒前
15秒前
sifvld完成签到,获得积分10
16秒前
17秒前
mark发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
18秒前
诚心绿兰发布了新的文献求助10
19秒前
happiness发布了新的文献求助10
20秒前
20秒前
20秒前
tiptip应助科研通管家采纳,获得10
21秒前
今后应助科研通管家采纳,获得10
21秒前
高帅应助科研通管家采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Advanced Memory Technology: Functional Materials and Devices 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675201
求助须知:如何正确求助?哪些是违规求助? 4943911
关于积分的说明 15151850
捐赠科研通 4834390
什么是DOI,文献DOI怎么找? 2589443
邀请新用户注册赠送积分活动 1543079
关于科研通互助平台的介绍 1501039