Entropy-Optimized Deep Weighted Product Quantization for Image Retrieval

代码本 代码字 量化(信号处理) 熵(时间箭头) 计算机科学 算法 概率分布 编码器 数学 模式识别(心理学) 矢量量化 解码方法 人工智能 理论计算机科学 物理 量子力学 统计 操作系统
作者
Lingchen Gu,Ju Liu,X.F. Liu,Wenbo Wan,Jiande Sun
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 1162-1174 被引量:2
标识
DOI:10.1109/tip.2024.3359066
摘要

Hashing and quantization have greatly succeeded by benefiting from deep learning for large-scale image retrieval. Recently, deep product quantization methods have attracted wide attention. However, representation capability of codewords needs to be further improved. Moreover, since the number of codewords in the codebook depends on experience, representation capability of codewords is usually imbalanced, which leads to redundancy or insufficiency of codewords and reduces retrieval performance. Therefore, in this paper, we propose a novel deep product quantization method, named Entropy Optimized deep Weighted Product Quantization (EOWPQ), which not only encodes samples into the weighted codewords in a new flexible manner but also balances the codeword assignment, improving while balancing representation capability of codewords. Specifically, we encode samples using the linear weighted sum of codewords instead of a single codeword as traditionally. Meanwhile, we establish the linear relationship between the weighted codewords and semantic labels, which effectively maintains semantic information of codewords. Moreover, in order to balance the codeword assignment, that is, avoiding some codewords representing most samples or some codewords representing very few samples, we maximize the entropy of the coding probability distribution and obtain the optimal coding probability distribution of samples by utilizing optimal transport theory, which achieves the optimal assignment of codewords and balances representation capability of codewords. The experimental results on three benchmark datasets show that EOWPQ can achieve better retrieval performance and also show the improvement of representation capability of codewords and the balance of codeword assignment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蒋完成签到,获得积分10
刚刚
Tigher发布了新的文献求助30
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
gpa完成签到,获得积分20
2秒前
3秒前
dengqin发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
5秒前
南风发布了新的文献求助90
5秒前
ttttt发布了新的文献求助10
6秒前
星星发布了新的文献求助10
6秒前
逸鑫林完成签到 ,获得积分10
7秒前
zhangxueqing完成签到,获得积分10
7秒前
Echo发布了新的文献求助10
7秒前
7秒前
JamesPei应助sophia采纳,获得10
8秒前
8秒前
谨言完成签到 ,获得积分10
9秒前
9秒前
cldg发布了新的文献求助10
9秒前
sasa完成签到,获得积分10
9秒前
Owen应助不想长大采纳,获得10
9秒前
9秒前
liu发布了新的文献求助10
10秒前
时尚的初珍完成签到,获得积分10
10秒前
啤酒白酒葡萄酒完成签到,获得积分20
10秒前
无奈完成签到,获得积分10
11秒前
ttttt完成签到,获得积分10
11秒前
寇寇完成签到 ,获得积分10
11秒前
11秒前
昭谏完成签到,获得积分10
12秒前
12秒前
二三发布了新的文献求助10
12秒前
lvshiwen发布了新的文献求助10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958608
求助须知:如何正确求助?哪些是违规求助? 3504895
关于积分的说明 11120971
捐赠科研通 3236246
什么是DOI,文献DOI怎么找? 1788726
邀请新用户注册赠送积分活动 871297
科研通“疑难数据库(出版商)”最低求助积分说明 802680