Entropy-Optimized Deep Weighted Product Quantization for Image Retrieval

代码本 代码字 量化(信号处理) 熵(时间箭头) 计算机科学 算法 概率分布 编码器 数学 模式识别(心理学) 矢量量化 解码方法 人工智能 理论计算机科学 物理 操作系统 统计 量子力学
作者
Lingchen Gu,Ju Liu,X.F. Liu,Wenbo Wan,Jiande Sun
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 1162-1174 被引量:1
标识
DOI:10.1109/tip.2024.3359066
摘要

Hashing and quantization have greatly succeeded by benefiting from deep learning for large-scale image retrieval. Recently, deep product quantization methods have attracted wide attention. However, representation capability of codewords needs to be further improved. Moreover, since the number of codewords in the codebook depends on experience, representation capability of codewords is usually imbalanced, which leads to redundancy or insufficiency of codewords and reduces retrieval performance. Therefore, in this paper, we propose a novel deep product quantization method, named Entropy Optimized deep Weighted Product Quantization (EOWPQ), which not only encodes samples into the weighted codewords in a new flexible manner but also balances the codeword assignment, improving while balancing representation capability of codewords. Specifically, we encode samples using the linear weighted sum of codewords instead of a single codeword as traditionally. Meanwhile, we establish the linear relationship between the weighted codewords and semantic labels, which effectively maintains semantic information of codewords. Moreover, in order to balance the codeword assignment, that is, avoiding some codewords representing most samples or some codewords representing very few samples, we maximize the entropy of the coding probability distribution and obtain the optimal coding probability distribution of samples by utilizing optimal transport theory, which achieves the optimal assignment of codewords and balances representation capability of codewords. The experimental results on three benchmark datasets show that EOWPQ can achieve better retrieval performance and also show the improvement of representation capability of codewords and the balance of codeword assignment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lu发布了新的文献求助10
1秒前
球球完成签到,获得积分10
2秒前
Anoodleatlarge完成签到 ,获得积分10
2秒前
3秒前
3秒前
4秒前
标致溪流发布了新的文献求助10
4秒前
Orange应助55555采纳,获得10
5秒前
6秒前
今后应助水水采纳,获得10
7秒前
我是老大应助lbbb采纳,获得10
7秒前
爱笑往事发布了新的文献求助10
7秒前
清风荷影发布了新的文献求助10
8秒前
77发布了新的文献求助10
8秒前
小板凳发布了新的文献求助10
8秒前
chen发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
久天发布了新的文献求助10
11秒前
12秒前
Sally完成签到,获得积分10
12秒前
仐屴完成签到,获得积分10
12秒前
WZH完成签到,获得积分10
14秒前
14秒前
chenzh86发布了新的文献求助10
14秒前
Akim应助白宇采纳,获得10
15秒前
kylin完成签到,获得积分10
16秒前
chenchenchen发布了新的文献求助10
17秒前
爆米花应助嘟嘟采纳,获得10
18秒前
19秒前
桐桐应助shaor采纳,获得10
19秒前
yeploooot完成签到 ,获得积分10
19秒前
行走的sci发布了新的文献求助10
19秒前
20秒前
21秒前
21秒前
yz123发布了新的文献求助10
24秒前
25秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313905
求助须知:如何正确求助?哪些是违规求助? 2946264
关于积分的说明 8529211
捐赠科研通 2621834
什么是DOI,文献DOI怎么找? 1434149
科研通“疑难数据库(出版商)”最低求助积分说明 665154
邀请新用户注册赠送积分活动 650738