A physically constrained Monte Carlo–Neural Network coupling algorithm for BNCT dose calculation

蒙特卡罗方法 计算机科学 计算 人工神经网络 放射治疗计划 算法 集合(抽象数据类型) 网格 中子俘获 可靠性(半导体) 数据集 中子 放射治疗 物理 人工智能 数学 医学 内科学 统计 功率(物理) 量子力学 程序设计语言 几何学
作者
Yongquan Wang,Junliang Du,Huan Lin,Xingcai Guan,Lu Zhang,Jinyang Li,Long Gu
出处
期刊:Medical Physics [Wiley]
卷期号:51 (6): 4524-4535
标识
DOI:10.1002/mp.16966
摘要

Abstract Background In boron neutron capture therapy (BNCT)—a form of binary radiotherapy—the primary challenge in treatment planning systems for dose calculations arises from the time‐consuming nature of the Monte Carlo (MC) method. Recent progress, including the use of neural networks (NN), has been made to accelerate BNCT dose calculations. However, this approach may result in significant dose errors in both the tumor and the skin, with the latter being a critical organ in BNCT. Furthermore, owing to the lack of physical processes in purely NN‐based approaches, their reliability for clinical dose calculations in BNCT is questionable. Purpose In this study, a physically constrained MC–NN (PCMC–NN) coupling algorithm is proposed to achieve fast and accurate computation of the BNCT three‐dimensional (3D) therapeutic dose distribution. This approach synergizes the high precision of the MC method with the speed of the NN and utilizes physical conservation laws to constrain the coupling process. It addresses the time‐consuming issue of the traditional MC method while reducing dose errors. Methods Clinical data were collected from 113 glioblastoma patients. For each patient, the 3D dose distributions for both the coarse and detailed dose grids were calculated using the MC code PHITS. Among these patients, the data from 14 patients were allocated to the test set, 9 to the validation set, and the remaining to the training set. A neural network, 3D‐Unet, was built based on the coarse grid dose and patient CT information to enable fast and accurate computation of the 3D detailed grid dose distribution of BNCT. Results Statistical evaluations, including relative deviation, dose deviation, mean absolute error (MAE), and mean absolute percentage error (MAPE) were conducted. Our findings suggested that the PCMC–NN algorithm substantially outperformed the traditional NN and interpolation methods. Furthermore, the proposed algorithm significantly reduced errors, particularly in the skin and GTV, and improved computational accuracy (hereinafter referred to simply as ‘accuracy’) with a MAPE range of 1.6%–4.0% and a maximum MAE of 0.3 Gy (IsoE) for different organs. The dose–volume histograms generated by the PCMC–NN aligned well with those obtained from the MC method, further validating its accuracy. Conclusions The PCMC–NN algorithm enhanced the speed and accuracy of BNCT dose calculations by combining the MC method with the NN algorithm. This indicates the significant potential of the proposed algorithm for clinical applications in optimizing treatment planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
今麦郎完成签到,获得积分10
刚刚
子车茗应助曾经的妍采纳,获得10
1秒前
1秒前
WCX完成签到,获得积分10
1秒前
亦巧完成签到,获得积分20
1秒前
yufanhui应助每天都要开心采纳,获得10
1秒前
Flora发布了新的文献求助30
2秒前
晨澜完成签到,获得积分10
2秒前
Jasper应助彩色橘子采纳,获得10
2秒前
兴奋涵雁发布了新的文献求助10
2秒前
隐形曼青应助华华仔仔采纳,获得10
2秒前
啵妞发布了新的文献求助10
2秒前
3秒前
善学以致用应助许nana采纳,获得10
3秒前
Owen应助背后的华采纳,获得10
3秒前
4秒前
彩虹天堂完成签到,获得积分10
4秒前
Rlice发布了新的文献求助10
5秒前
青豆完成签到,获得积分10
5秒前
5秒前
6秒前
光亮的幼珊完成签到,获得积分10
6秒前
蝎子莱莱完成签到,获得积分20
6秒前
6秒前
7秒前
Aki发布了新的文献求助10
7秒前
MQ&FF完成签到,获得积分0
8秒前
yoyo完成签到,获得积分10
8秒前
淡淡的晓筠完成签到,获得积分10
8秒前
漂亮钢铁侠完成签到,获得积分10
8秒前
8秒前
隐形念之完成签到,获得积分10
8秒前
8秒前
不配.应助DingYL采纳,获得20
8秒前
Marilyn完成签到,获得积分10
9秒前
gs完成签到,获得积分10
9秒前
whb825258完成签到,获得积分10
10秒前
潇潇发布了新的文献求助10
10秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123951
求助须知:如何正确求助?哪些是违规求助? 2774359
关于积分的说明 7722160
捐赠科研通 2429940
什么是DOI,文献DOI怎么找? 1290751
科研通“疑难数据库(出版商)”最低求助积分说明 621911
版权声明 600283