Attention-enhanced multi-source cost volume multi-view stereo

计算机科学 体积热力学 计算机视觉 人工智能 计算机图形学(图像) 实时计算 量子力学 物理
作者
Yucan Wang,Zhenzhen Wang,Haishan Tian,Yifan Song,Yangjie Cao,Zhiyan Wei
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:132: 107852-107852
标识
DOI:10.1016/j.engappai.2024.107852
摘要

Although past learning-based Multi-View Stereo methods performed well, they still struggle to reconstruct regions with occlusions or weak textures. In this paper, we propose a Multi-View Stereo Net using attention mechanism and multi-source cost volume, namely AMS-MVSNet. We first introduce an improved multi-level feature pyramid net (FPN) structure to achieve smoother feature transitions in three stages, and establish additional connections between features that with larger scale difference. This can enhance the fusion of features extracted at different stages. In addition, we construct an attention-enhanced module, which can assign different weights according to the rendering effect of the same spatial point in different views. This can effectively alleviate the impact of false matches caused by weak textures or occlusions during cost volume construction. Furthermore, we utilize a multi-source cost volume that not only incorporates the matching information computed from each view group, but also introduces the depth map differences obtained from different views. The multi-source cost volume greatly enrichs the generalization ability of neural network. Lastly, our network architecture employs a Gated Recurrent Unit (GRU) to reduce memory pressure during the depth inference process and improve efficiency. Our quantitative and qualitative testing results on the DTU, Tanks & Temples and BlendedMVS datasets demonstrate the excellent performance of our neural network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
蔡蔡发布了新的文献求助10
1秒前
1秒前
2秒前
newplayer发布了新的文献求助10
2秒前
3秒前
MADAO完成签到,获得积分10
3秒前
方远锋发布了新的文献求助10
3秒前
4秒前
4秒前
标致绮露发布了新的文献求助10
5秒前
6秒前
LU发布了新的文献求助10
6秒前
6秒前
中和皇极发布了新的文献求助10
8秒前
鱼鳞飞飞发布了新的文献求助10
8秒前
10秒前
壮观问寒应助啾啾唧唧采纳,获得10
10秒前
10秒前
10秒前
11秒前
11秒前
浮生完成签到 ,获得积分10
11秒前
11秒前
小顾发布了新的文献求助10
11秒前
善学以致用应助胖橘采纳,获得10
12秒前
万能图书馆应助不知道采纳,获得10
12秒前
12秒前
13秒前
直率的炎彬完成签到,获得积分20
13秒前
安静不言应助负责的方盒采纳,获得10
13秒前
13秒前
Xiaoyan发布了新的文献求助10
13秒前
文静千凡发布了新的文献求助10
14秒前
guard发布了新的文献求助10
15秒前
lokiuiw发布了新的文献求助10
16秒前
16秒前
大个应助夜航鸟采纳,获得10
16秒前
易殇完成签到,获得积分20
17秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3412462
求助须知:如何正确求助?哪些是违规求助? 3015168
关于积分的说明 8868829
捐赠科研通 2702831
什么是DOI,文献DOI怎么找? 1481897
科研通“疑难数据库(出版商)”最低求助积分说明 685084
邀请新用户注册赠送积分活动 679733