亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DyFusion: Cross-Attention 3D Object Detection with Dynamic Fusion

计算机科学 融合 人工智能 计算机视觉 目标检测 传感器融合 模式识别(心理学) 哲学 语言学
作者
Jiangfeng Bi,Haiyue Wei,Guoxin Zhang,Kuihe Yang,Ziying Song
出处
期刊:IEEE Latin America Transactions [Institute of Electrical and Electronics Engineers]
卷期号:22 (2): 106-112 被引量:6
标识
DOI:10.1109/tla.2024.10412035
摘要

In the realm of autonomous driving, LiDAR and camera sensors play an indispensable role, furnishing pivotal observational data for the critical task of precise 3D object detection. Existing fusion algorithms effectively utilize the complementary data from both sensors. However, these methods typically concatenate the raw point cloud data and pixel-level image features, unfortunately, a process that introduces errors and results in the loss of critical information embedded in each modality. To mitigate the problem of lost feature information, this paper proposes a Cross-Attention Dynamic Fusion (CADF) strategy that dynamically fuses the two heterogeneous data sources. In addition, we acknowledge the issue of insufficient data augmentation for these two diverse modalities. To combat this, we propose a Synchronous Data Augmentation (SDA) strategy designed to enhance training efficiency. We have tested our method using the KITTI and nuScenes datasets, and the results have been promising. Remarkably, our top-performing model attained an 82.52% mAP on the KITTI test benchmark, outperforming other state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
静静完成签到 ,获得积分10
1秒前
13秒前
无情的琳发布了新的文献求助10
18秒前
22秒前
Dannnn完成签到 ,获得积分10
23秒前
24秒前
24秒前
24秒前
27秒前
量子星尘发布了新的文献求助10
30秒前
Bob发布了新的文献求助10
32秒前
38秒前
无情的琳发布了新的文献求助10
41秒前
44秒前
么西么西发布了新的文献求助10
48秒前
51秒前
傻傻的哈密瓜完成签到,获得积分10
57秒前
59秒前
WQ完成签到,获得积分20
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
1分钟前
牛八先生完成签到,获得积分10
2分钟前
天天发布了新的文献求助30
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
CodeCraft应助无情的琳采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
无情的琳发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5724088
求助须知:如何正确求助?哪些是违规求助? 5284344
关于积分的说明 15299562
捐赠科研通 4872214
什么是DOI,文献DOI怎么找? 2616703
邀请新用户注册赠送积分活动 1566595
关于科研通互助平台的介绍 1523430