亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multimodal 3D Object Detection Based on Sparse Interaction in Internet of Vehicles

互联网 计算机科学 目标检测 对象(语法) 人工智能 计算机视觉 模式识别(心理学) 万维网
作者
Hui Li,Tongao Ge,Keqiang Bai,Gaofeng Nie,Lingwei Xu,Xiaoxue Ai,Song Cao
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:74 (2): 2174-2186 被引量:4
标识
DOI:10.1109/tvt.2024.3357492
摘要

Combining the internet of vehicles with autonomous driving visual perception can enhance vehicle intelligence. Vehicles use the 3D object detection algorithm to perceive their surroundings and share detection results with other vehicles using the internet of vehicles technology, improving the efficiency of intelligent transportation systems. Multimodal information fusion of LiDAR and cameras can improve the performance of 3D object detection. However, the different modality information is inhomogeneous, multimodal 3D object detection still has challenges such as difficult semantic alignment of modal elements and inadequate fusion. To mitigate these challenges, we first propose the sparse interaction with centroid query (SICQ) for voxel-level features from different modalities, which aligns different modal semantic information through more precise and fine-grained interaction. Then, we propose the dense fusion with multi-scale masked attention (DFMMA), using multi-scale feature masks from bird's-eye-view (BEV)-level multimodal features to improve performance for small object feature perception. Finally, we propose the multimodal grid encoder with positional information (MGEPI), through positional information implicitly guiding and the transformer-based attention mechanism for grid-level features, improves the perception of detection scene context spatial information and enhances the robustness of the algorithm. Additionally, this paper performs comprehensive experiments on the popular KITTI dataset and demonstrates that our algorithm has superior 3D object detection performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助江经纬采纳,获得10
4秒前
6秒前
Borw完成签到 ,获得积分10
6秒前
全球完成签到,获得积分10
9秒前
9秒前
14秒前
17秒前
20秒前
22秒前
默默完成签到,获得积分10
22秒前
22秒前
24秒前
江经纬发布了新的文献求助10
25秒前
默默发布了新的文献求助10
25秒前
27秒前
檀江发布了新的文献求助10
28秒前
bigalexwei完成签到,获得积分20
29秒前
wangll发布了新的文献求助10
29秒前
30秒前
善学以致用应助AWY采纳,获得10
30秒前
30秒前
量子星尘发布了新的文献求助10
33秒前
34秒前
共享精神应助ceeray23采纳,获得20
36秒前
Kraghc发布了新的文献求助10
36秒前
檀江完成签到,获得积分10
36秒前
37秒前
白家瑜发布了新的文献求助10
38秒前
mm完成签到 ,获得积分10
38秒前
镜小小静发布了新的文献求助10
40秒前
Kraghc完成签到,获得积分10
46秒前
和谐蛋蛋完成签到 ,获得积分10
47秒前
latadawang完成签到,获得积分10
49秒前
51秒前
54秒前
DOO发布了新的文献求助20
54秒前
李健应助镜小小静采纳,获得10
54秒前
56秒前
淡淡的无敌完成签到 ,获得积分10
57秒前
皮克阿普发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664066
求助须知:如何正确求助?哪些是违规求助? 4857165
关于积分的说明 15107066
捐赠科研通 4822504
什么是DOI,文献DOI怎么找? 2581501
邀请新用户注册赠送积分活动 1535723
关于科研通互助平台的介绍 1493949