亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multimodal 3D Object Detection Based on Sparse Interaction in Internet of Vehicles

互联网 计算机科学 目标检测 对象(语法) 人工智能 计算机视觉 模式识别(心理学) 万维网
作者
Hui Li,Tongao Ge,Keqiang Bai,Gaofeng Nie,Lingwei Xu,Xiaoxue Ai,Song Cao
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:2
标识
DOI:10.1109/tvt.2024.3357492
摘要

Combining the internet of vehicles with autonomous driving visual perception can enhance vehicle intelligence. Vehicles use the 3D object detection algorithm to perceive their surroundings and share detection results with other vehicles using the internet of vehicles technology, improving the efficiency of intelligent transportation systems. Multimodal information fusion of LiDAR and cameras can improve the performance of 3D object detection. However, the different modality information is inhomogeneous, multimodal 3D object detection still has challenges such as difficult semantic alignment of modal elements and inadequate fusion. To mitigate these challenges, we first propose the sparse interaction with centroid query (SICQ) for voxel-level features from different modalities, which aligns different modal semantic information through more precise and fine-grained interaction. Then, we propose the dense fusion with multi-scale masked attention (DFMMA), using multi-scale feature masks from bird's-eye-view (BEV)-level multimodal features to improve performance for small object feature perception. Finally, we propose the multimodal grid encoder with positional information (MGEPI), through positional information implicitly guiding and the transformer-based attention mechanism for grid-level features, improves the perception of detection scene context spatial information and enhances the robustness of the algorithm. Additionally, this paper performs comprehensive experiments on the popular KITTI dataset and demonstrates that our algorithm has superior 3D object detection performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
jjyy发布了新的文献求助10
刚刚
2秒前
3秒前
阿敬完成签到,获得积分10
3秒前
CodeCraft应助肾宝采纳,获得10
16秒前
jjyy完成签到,获得积分10
21秒前
27秒前
30秒前
香蕉觅云应助jjyy采纳,获得10
34秒前
路宝发布了新的文献求助10
34秒前
35秒前
魏建威发布了新的文献求助10
42秒前
43秒前
nlwsp完成签到 ,获得积分10
43秒前
nihao完成签到 ,获得积分10
44秒前
46秒前
吴彦祖应助科研通管家采纳,获得10
48秒前
浮游应助科研通管家采纳,获得10
48秒前
吴彦祖应助科研通管家采纳,获得10
48秒前
Jasper应助科研通管家采纳,获得10
48秒前
可爱的函函应助魏建威采纳,获得10
48秒前
吴彦祖应助科研通管家采纳,获得10
48秒前
浮游应助科研通管家采纳,获得10
48秒前
浮游应助科研通管家采纳,获得10
48秒前
吴彦祖应助科研通管家采纳,获得10
48秒前
吴彦祖应助科研通管家采纳,获得10
48秒前
科研通AI6应助科研通管家采纳,获得10
48秒前
吴彦祖应助科研通管家采纳,获得10
48秒前
传奇3应助科研通管家采纳,获得10
48秒前
吴彦祖应助科研通管家采纳,获得10
48秒前
浮游应助科研通管家采纳,获得10
48秒前
48秒前
wangfaqing942完成签到 ,获得积分10
50秒前
香樟沐雪发布了新的文献求助10
50秒前
Arit发布了新的文献求助20
53秒前
fx完成签到 ,获得积分10
54秒前
55秒前
英姑应助称心静枫采纳,获得30
55秒前
星辰大海应助香樟沐雪采纳,获得10
58秒前
瓜崽发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498185
求助须知:如何正确求助?哪些是违规求助? 4595509
关于积分的说明 14449204
捐赠科研通 4528187
什么是DOI,文献DOI怎么找? 2481411
邀请新用户注册赠送积分活动 1465554
关于科研通互助平台的介绍 1438297