Multimodal 3D Object Detection Based on Sparse Interaction in Internet of Vehicles

互联网 计算机科学 目标检测 对象(语法) 人工智能 计算机视觉 模式识别(心理学) 万维网
作者
Hui Li,Tongao Ge,Keqiang Bai,Gaofeng Nie,Lingwei Xu,Xiaoxue Ai,Song Cao
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:2
标识
DOI:10.1109/tvt.2024.3357492
摘要

Combining the internet of vehicles with autonomous driving visual perception can enhance vehicle intelligence. Vehicles use the 3D object detection algorithm to perceive their surroundings and share detection results with other vehicles using the internet of vehicles technology, improving the efficiency of intelligent transportation systems. Multimodal information fusion of LiDAR and cameras can improve the performance of 3D object detection. However, the different modality information is inhomogeneous, multimodal 3D object detection still has challenges such as difficult semantic alignment of modal elements and inadequate fusion. To mitigate these challenges, we first propose the sparse interaction with centroid query (SICQ) for voxel-level features from different modalities, which aligns different modal semantic information through more precise and fine-grained interaction. Then, we propose the dense fusion with multi-scale masked attention (DFMMA), using multi-scale feature masks from bird's-eye-view (BEV)-level multimodal features to improve performance for small object feature perception. Finally, we propose the multimodal grid encoder with positional information (MGEPI), through positional information implicitly guiding and the transformer-based attention mechanism for grid-level features, improves the perception of detection scene context spatial information and enhances the robustness of the algorithm. Additionally, this paper performs comprehensive experiments on the popular KITTI dataset and demonstrates that our algorithm has superior 3D object detection performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
4秒前
dild完成签到,获得积分10
4秒前
清枫发布了新的文献求助10
8秒前
李想完成签到,获得积分10
8秒前
彭于晏应助不喝牛奶的猫采纳,获得10
9秒前
9秒前
之星君完成签到,获得积分10
11秒前
13秒前
14秒前
浮游应助彪壮的雪晴采纳,获得10
15秒前
易晨曦完成签到 ,获得积分10
16秒前
16秒前
17秒前
打打应助endlessloop采纳,获得10
17秒前
无辜南晴发布了新的文献求助10
18秒前
19秒前
风息发布了新的文献求助10
20秒前
无情灯泡发布了新的文献求助10
20秒前
杜不腾发布了新的文献求助10
21秒前
念白发布了新的文献求助10
23秒前
科研通AI5应助jeesy采纳,获得10
25秒前
25秒前
25秒前
25秒前
谦让的博完成签到,获得积分10
25秒前
27秒前
APTACH完成签到,获得积分10
27秒前
27秒前
英吉利25发布了新的文献求助10
28秒前
29秒前
juphen2完成签到,获得积分10
32秒前
李健的小迷弟应助念白采纳,获得10
34秒前
爆米花应助大方研究生采纳,获得10
37秒前
酷波er应助清枫采纳,获得10
38秒前
40秒前
新月完成签到 ,获得积分10
40秒前
完美世界应助小冯采纳,获得10
40秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5217962
求助须知:如何正确求助?哪些是违规求助? 4392247
关于积分的说明 13674920
捐赠科研通 4254581
什么是DOI,文献DOI怎么找? 2334523
邀请新用户注册赠送积分活动 1332187
关于科研通互助平台的介绍 1286219