Multimodal 3D Object Detection Based on Sparse Interaction in Internet of Vehicles

互联网 计算机科学 目标检测 对象(语法) 人工智能 计算机视觉 模式识别(心理学) 万维网
作者
Hui Li,Tongao Ge,Keqiang Bai,Gaofeng Nie,Lingwei Xu,Xiaoxue Ai,Song Cao
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tvt.2024.3357492
摘要

Combining the internet of vehicles with autonomous driving visual perception can enhance vehicle intelligence. Vehicles use the 3D object detection algorithm to perceive their surroundings and share detection results with other vehicles using the internet of vehicles technology, improving the efficiency of intelligent transportation systems. Multimodal information fusion of LiDAR and cameras can improve the performance of 3D object detection. However, the different modality information is inhomogeneous, multimodal 3D object detection still has challenges such as difficult semantic alignment of modal elements and inadequate fusion. To mitigate these challenges, we first propose the sparse interaction with centroid query (SICQ) for voxel-level features from different modalities, which aligns different modal semantic information through more precise and fine-grained interaction. Then, we propose the dense fusion with multi-scale masked attention (DFMMA), using multi-scale feature masks from bird's-eye-view (BEV)-level multimodal features to improve performance for small object feature perception. Finally, we propose the multimodal grid encoder with positional information (MGEPI), through positional information implicitly guiding and the transformer-based attention mechanism for grid-level features, improves the perception of detection scene context spatial information and enhances the robustness of the algorithm. Additionally, this paper performs comprehensive experiments on the popular KITTI dataset and demonstrates that our algorithm has superior 3D object detection performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
脑洞疼应助flyia采纳,获得10
1秒前
幽默胜完成签到,获得积分10
1秒前
之乎者也的小肥完成签到,获得积分10
1秒前
wu发布了新的文献求助10
1秒前
2秒前
儒雅依霜完成签到,获得积分10
2秒前
2秒前
在水一方应助义气的雨旋采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
科研小白完成签到,获得积分10
2秒前
2秒前
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
77发布了新的文献求助20
3秒前
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
pcr163应助科研通管家采纳,获得30
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
pcr163应助科研通管家采纳,获得30
3秒前
TrucCSC应助科研通管家采纳,获得30
3秒前
田様应助科研通管家采纳,获得10
3秒前
3秒前
Owen应助科研通管家采纳,获得10
3秒前
pluto应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
5秒前
5秒前
derlun完成签到,获得积分10
5秒前
6秒前
7秒前
7秒前
8秒前
不开心发布了新的文献求助10
8秒前
NexusExplorer应助超帅的遥采纳,获得10
9秒前
9秒前
asd发布了新的文献求助10
9秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3232703
求助须知:如何正确求助?哪些是违规求助? 2879469
关于积分的说明 8211416
捐赠科研通 2546954
什么是DOI,文献DOI怎么找? 1376476
科研通“疑难数据库(出版商)”最低求助积分说明 647624
邀请新用户注册赠送积分活动 623003