Multimodal 3D Object Detection Based on Sparse Interaction in Internet of Vehicles

互联网 计算机科学 目标检测 对象(语法) 人工智能 计算机视觉 模式识别(心理学) 万维网
作者
Hui Li,Tongao Ge,Keqiang Bai,Gaofeng Nie,Lingwei Xu,Xiaoxue Ai,Song Cao
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:74 (2): 2174-2186 被引量:4
标识
DOI:10.1109/tvt.2024.3357492
摘要

Combining the internet of vehicles with autonomous driving visual perception can enhance vehicle intelligence. Vehicles use the 3D object detection algorithm to perceive their surroundings and share detection results with other vehicles using the internet of vehicles technology, improving the efficiency of intelligent transportation systems. Multimodal information fusion of LiDAR and cameras can improve the performance of 3D object detection. However, the different modality information is inhomogeneous, multimodal 3D object detection still has challenges such as difficult semantic alignment of modal elements and inadequate fusion. To mitigate these challenges, we first propose the sparse interaction with centroid query (SICQ) for voxel-level features from different modalities, which aligns different modal semantic information through more precise and fine-grained interaction. Then, we propose the dense fusion with multi-scale masked attention (DFMMA), using multi-scale feature masks from bird's-eye-view (BEV)-level multimodal features to improve performance for small object feature perception. Finally, we propose the multimodal grid encoder with positional information (MGEPI), through positional information implicitly guiding and the transformer-based attention mechanism for grid-level features, improves the perception of detection scene context spatial information and enhances the robustness of the algorithm. Additionally, this paper performs comprehensive experiments on the popular KITTI dataset and demonstrates that our algorithm has superior 3D object detection performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ambit完成签到,获得积分20
刚刚
张小完成签到,获得积分20
1秒前
3秒前
TingtingGZ发布了新的文献求助10
3秒前
3秒前
4秒前
claud完成签到 ,获得积分10
5秒前
勤恳元枫完成签到,获得积分10
5秒前
5秒前
6秒前
自由醉薇完成签到 ,获得积分10
7秒前
蔚蓝天空完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
小小的手心完成签到,获得积分10
8秒前
卷卷完成签到,获得积分10
9秒前
10秒前
10秒前
顺利毕业完成签到,获得积分10
10秒前
Ambit发布了新的文献求助30
11秒前
wkjfh应助科研通管家采纳,获得10
11秒前
orixero应助懒羊羊大王采纳,获得10
11秒前
一二应助科研通管家采纳,获得10
11秒前
11秒前
zhonglv7应助科研通管家采纳,获得10
11秒前
stella完成签到,获得积分20
11秒前
11秒前
11秒前
wkjfh应助科研通管家采纳,获得20
11秒前
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
小马甲应助科研通管家采纳,获得10
11秒前
霸气映之发布了新的文献求助10
11秒前
Live应助科研通管家采纳,获得10
11秒前
无极微光应助韦小宝采纳,获得20
11秒前
wkjfh应助科研通管家采纳,获得10
11秒前
12秒前
zhonglv7应助科研通管家采纳,获得10
12秒前
脑洞疼应助科研通管家采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666801
求助须知:如何正确求助?哪些是违规求助? 4883139
关于积分的说明 15118110
捐赠科研通 4825764
什么是DOI,文献DOI怎么找? 2583569
邀请新用户注册赠送积分活动 1537746
关于科研通互助平台的介绍 1495952