Multimodal 3D Object Detection Based on Sparse Interaction in Internet of Vehicles

互联网 计算机科学 目标检测 对象(语法) 人工智能 计算机视觉 模式识别(心理学) 万维网
作者
Hui Li,Tongao Ge,Keqiang Bai,Gaofeng Nie,Lingwei Xu,Xiaoxue Ai,Song Cao
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:74 (2): 2174-2186 被引量:4
标识
DOI:10.1109/tvt.2024.3357492
摘要

Combining the internet of vehicles with autonomous driving visual perception can enhance vehicle intelligence. Vehicles use the 3D object detection algorithm to perceive their surroundings and share detection results with other vehicles using the internet of vehicles technology, improving the efficiency of intelligent transportation systems. Multimodal information fusion of LiDAR and cameras can improve the performance of 3D object detection. However, the different modality information is inhomogeneous, multimodal 3D object detection still has challenges such as difficult semantic alignment of modal elements and inadequate fusion. To mitigate these challenges, we first propose the sparse interaction with centroid query (SICQ) for voxel-level features from different modalities, which aligns different modal semantic information through more precise and fine-grained interaction. Then, we propose the dense fusion with multi-scale masked attention (DFMMA), using multi-scale feature masks from bird's-eye-view (BEV)-level multimodal features to improve performance for small object feature perception. Finally, we propose the multimodal grid encoder with positional information (MGEPI), through positional information implicitly guiding and the transformer-based attention mechanism for grid-level features, improves the perception of detection scene context spatial information and enhances the robustness of the algorithm. Additionally, this paper performs comprehensive experiments on the popular KITTI dataset and demonstrates that our algorithm has superior 3D object detection performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_85YNe8发布了新的文献求助10
刚刚
刚刚
小新应助科研通管家采纳,获得10
刚刚
烟花应助科研通管家采纳,获得10
刚刚
星辰大海应助科研通管家采纳,获得10
刚刚
研友_VZG7GZ应助科研通管家采纳,获得10
刚刚
慕青应助科研通管家采纳,获得10
刚刚
BowieHuang应助科研通管家采纳,获得10
刚刚
JayceHe应助科研通管家采纳,获得10
刚刚
慕青应助科研通管家采纳,获得10
刚刚
EMC应助科研通管家采纳,获得10
1秒前
EMC应助科研通管家采纳,获得10
1秒前
李佳薇发布了新的文献求助10
1秒前
小新应助科研通管家采纳,获得10
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
yznfly应助ALITTLE采纳,获得20
1秒前
小点完成签到 ,获得积分10
2秒前
Srui完成签到,获得积分10
2秒前
2秒前
小高发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
颜卿完成签到 ,获得积分10
5秒前
xtx完成签到,获得积分20
5秒前
5秒前
砥砺前行完成签到 ,获得积分10
5秒前
5秒前
wrr发布了新的文献求助10
5秒前
美满的诗蕾完成签到,获得积分10
5秒前
123发布了新的文献求助10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604240
求助须知:如何正确求助?哪些是违规求助? 4689005
关于积分的说明 14857491
捐赠科研通 4697182
什么是DOI,文献DOI怎么找? 2541216
邀请新用户注册赠送积分活动 1507328
关于科研通互助平台的介绍 1471867