亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic Well-Log Depth Shift with Multilevel Wavelet Decomposition Network and Dynamic Time Warping

图像扭曲 小波 分解 动态时间归整 计算机科学 小波变换 人工智能 数学 生态学 生物
作者
Fan Jing Meng,Xiangyu Fan,Siyuan Chen,YingYing Ye,Hailong Jiang,Wen‐Chi Pan,Feng Wu,Heng‐Ru Zhang,Yan Chen,Amir Semnani
标识
DOI:10.2139/ssrn.4745465
摘要

Well log measurements serve as continuous records providing indirect assessments of formation properties, constituting the primary input for the development of both static and dynamic reservoir models. In fact, not all well logging data of a single well are measured at once, high-precision depth matching of well logging data is crucial for later rock physics interpretation and machine learning correlation extraction. To address this imperative, A novel approach based on the Multilevel Wavelet Decomposition Network integrated with a Gated Recurrent Unit network, complemented by Dynamic Time Warping was constructed for automated well-log depth correction. The Multilevel Wavelet Decomposition Network is adept at extracting frequency information from well logging data, thereby enabling a nuanced understanding of the intricate geological features. Simultaneously, the Gated Recurrent Unit networks efficiently capture depth sequences information, enriching the contextual understanding of the subsurface formations. The incorporation of Dynamic Time Warping ensures accurate depth matching and correction, optimizing the alignment of well logs.This methodology was rigorously evaluated in the 2023 SPWLA PDDA Machine Learning Competition, yielding noteworthy results. The misaligned well logs have been successfully rectified, encompassing crucial parameters such as RHOB, NPHI, and RD, aligning them seamlessly with a reference GR log. Evaluation metrics, including NMSE (Normalized Mean Squared Error) and MAD (Mean Absolute Deviation), underscore the efficacy of our approach, with the optimal performance recorded at NMSE=0.3148 and MAD=21.7658. This achievement secured the top position in the aforementioned competition.This research signifies a pioneering application of frequency information derived from well logging data to address the intricate task of depth alignment across disparate well log types. Notably, the complexity introduced by aligning logs of distinct types is surmounted, demonstrating the robustness and foresight of our proposed method. The outcomes presented herein affirm the efficacy of our approach, heralding a significant advancement in the realm of well-log depth correction and alignment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
3秒前
12秒前
18秒前
阿泽完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
25秒前
25秒前
tigerli发布了新的文献求助10
28秒前
30秒前
田様应助李亚宁采纳,获得10
32秒前
量子星尘发布了新的文献求助10
34秒前
充电宝应助tigerli采纳,获得10
34秒前
35秒前
量子星尘发布了新的文献求助10
43秒前
43秒前
量子星尘发布了新的文献求助10
53秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
Yound发布了新的文献求助10
1分钟前
一路微笑完成签到,获得积分10
1分钟前
李亚宁发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
坚强白凝发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
北有云烟完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助30
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
zsmj23完成签到 ,获得积分0
2分钟前
量子星尘发布了新的文献求助10
2分钟前
追三完成签到 ,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助50
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666365
求助须知:如何正确求助?哪些是违规求助? 3225436
关于积分的说明 9762962
捐赠科研通 2935270
什么是DOI,文献DOI怎么找? 1607588
邀请新用户注册赠送积分活动 759266
科研通“疑难数据库(出版商)”最低求助积分说明 735188