析氧
无定形固体
材料科学
非阻塞I/O
异质结
电催化剂
催化作用
退火(玻璃)
化学工程
纳米技术
光电子学
化学
电化学
冶金
电极
结晶学
物理化学
有机化学
工程类
作者
Haiyan An,Xijiao Mu,Guoying Tan,Pingru Su,Liangliang Liu,Nan Song,Shi‐Qiang Bai,Chun‐Hua Yan,Yu Tang
出处
期刊:Small
[Wiley]
日期:2024-03-03
被引量:4
标识
DOI:10.1002/smll.202311505
摘要
Abstract The rational design of heterogeneous catalysts is crucial for achieving optimal physicochemical properties and high electrochemical activity. However, the development of new amorphous–crystalline heterostructures is significantly more challenging than that of the existing crystalline–crystalline heterostructures. To overcome these issues, a coordination‐assisted strategy that can help fabricate an amorphous NiO/crystalline NiCeO x (a‐NiO/c‐NiCeO x ) heterostructure is reported herein. The coordination geometry of the organic ligands plays a pivotal role in permitting the formation of coordination polymers with high Ni contents. This consequently provides an opportunity for enabling the supersaturation of Ni in the NiCeO x structure during annealing, leading to the endogenous spillover of Ni from the depths of NiCeO x to its surface. The resulting heterostructure, featuring strongly coupled amorphous NiO and crystalline NiCeO x , exhibits harmonious interactions in addition to low overpotentials and high catalytic stability in the oxygen evolution reaction (OER). Theoretical calculations prove that the amorphous–crystalline interfaces facilitate charge transfer, which plays a critical role in regulating the local electron density of the Ni sites, thereby promoting the adsorption of oxygen‐based intermediates on the Ni sites and lowering the dissociation‐related energy barriers. Overall, this study underscores the potential of coordinating different metal ions at the molecular level to advance amorphous–crystalline heterostructure design.
科研通智能强力驱动
Strongly Powered by AbleSci AI