放射基因组学
人工智能
计算机科学
深度学习
接收机工作特性
计算生物学
磁共振成像
乳腺癌
模式识别(心理学)
机器学习
生物信息学
医学
遗传学
生物
癌症
无线电技术
放射科
作者
Zi Huai Huang,Lianghong Chen,Yan Sun,Qian Liu,Pingzhao Hu
标识
DOI:10.1186/s12967-024-05018-9
摘要
Breast Cancer (BC) is a highly heterogeneous and complex disease. Personalized treatment options require the integration of multi-omic data and consideration of phenotypic variability. Radiogenomics aims to merge medical images with genomic measurements but encounter challenges due to unpaired data consisting of imaging, genomic, or clinical outcome data. In this study, we propose the utilization of a well-trained conditional generative adversarial network (cGAN) to address the unpaired data issue in radiogenomic analysis of BC. The generated images will then be used to predict the mutations status of key driver genes and BC subtypes.
科研通智能强力驱动
Strongly Powered by AbleSci AI