亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Digital Dietary Behaviors in Individuals With Depression: Real-World Behavioral Observation

萧条(经济学) 心理学 临床心理学 经济 宏观经济学
作者
Yue Zhu,Ran Zhang,Shuluo Yin,Yihui Sun,Fay Y. Womer,Rongxun Liu,Sheng Zeng,Xizhe Zhang,Fei Wang
出处
期刊:JMIR public health and surveillance [JMIR Publications Inc.]
卷期号:10: e47428-e47428
标识
DOI:10.2196/47428
摘要

Background Depression is often accompanied by changes in behavior, including dietary behaviors. The relationship between dietary behaviors and depression has been widely studied, yet previous research has relied on self-reported data which is subject to recall bias. Electronic device–based behavioral monitoring offers the potential for objective, real-time data collection of a large amount of continuous, long-term behavior data in naturalistic settings. Objective The study aims to characterize digital dietary behaviors in depression, and to determine whether these behaviors could be used to detect depression. Methods A total of 3310 students (2222 healthy controls [HCs], 916 with mild depression, and 172 with moderate-severe depression) were recruited for the study of their dietary behaviors via electronic records over a 1-month period, and depression severity was assessed in the middle of the month. The differences in dietary behaviors across the HCs, mild depression, and moderate-severe depression were determined by ANCOVA (analyses of covariance) with age, gender, BMI, and educational level as covariates. Multivariate logistic regression analyses were used to examine the association between dietary behaviors and depression severity. Support vector machine analysis was used to determine whether changes in dietary behaviors could detect mild and moderate-severe depression. Results The study found that individuals with moderate-severe depression had more irregular eating patterns, more fluctuated feeding times, spent more money on dinner, less diverse food choices, as well as eating breakfast less frequently, and preferred to eat only lunch and dinner, compared with HCs. Moderate-severe depression was found to be negatively associated with the daily 3 regular meals pattern (breakfast-lunch-dinner pattern; OR 0.467, 95% CI 0.239-0.912), and mild depression was positively associated with daily lunch and dinner pattern (OR 1.460, 95% CI 1.016-2.100). These changes in digital dietary behaviors were able to detect mild and moderate-severe depression (accuracy=0.53, precision=0.60), with better accuracy for detecting moderate-severe depression (accuracy=0.67, precision=0.64). Conclusions This is the first study to develop a profile of changes in digital dietary behaviors in individuals with depression using real-world behavioral monitoring. The results suggest that digital markers may be a promising approach for detecting depression.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
量子星尘发布了新的文献求助10
19秒前
1分钟前
wxx发布了新的文献求助10
1分钟前
郑林完成签到,获得积分20
1分钟前
隐形曼青应助计时器响了采纳,获得10
1分钟前
小马甲应助wxx采纳,获得10
1分钟前
星辰大海应助郑林采纳,获得10
1分钟前
1分钟前
WX发布了新的文献求助10
2分钟前
科研通AI6应助Double采纳,获得150
2分钟前
2分钟前
2分钟前
科研通AI6应助Double采纳,获得150
2分钟前
2分钟前
糟糕的颜完成签到 ,获得积分10
3分钟前
Meteor636完成签到 ,获得积分10
3分钟前
乐乐应助计时器响了采纳,获得10
3分钟前
3分钟前
bji完成签到,获得积分10
3分钟前
Double发布了新的文献求助150
3分钟前
计时器响了完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
wxx完成签到 ,获得积分20
4分钟前
天真千易发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
Akim应助计时器响了采纳,获得10
4分钟前
Double发布了新的文献求助150
4分钟前
KY2022完成签到,获得积分10
4分钟前
科研通AI6应助Double采纳,获得150
4分钟前
ala完成签到,获得积分10
4分钟前
天天快乐应助hc采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
龚广山发布了新的文献求助20
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5432528
求助须知:如何正确求助?哪些是违规求助? 4545045
关于积分的说明 14195182
捐赠科研通 4464497
什么是DOI,文献DOI怎么找? 2447139
邀请新用户注册赠送积分活动 1438488
关于科研通互助平台的介绍 1415342