已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Digital Dietary Behaviors in Individuals With Depression: Real-World Behavioral Observation

萧条(经济学) 心理学 临床心理学 经济 宏观经济学
作者
Yue Zhu,Ran Zhang,Shuluo Yin,Yihui Sun,Fay Y. Womer,Rongxun Liu,Sheng Zeng,Xizhe Zhang,Fei Wang
出处
期刊:JMIR public health and surveillance [JMIR Publications]
卷期号:10: e47428-e47428
标识
DOI:10.2196/47428
摘要

Background Depression is often accompanied by changes in behavior, including dietary behaviors. The relationship between dietary behaviors and depression has been widely studied, yet previous research has relied on self-reported data which is subject to recall bias. Electronic device–based behavioral monitoring offers the potential for objective, real-time data collection of a large amount of continuous, long-term behavior data in naturalistic settings. Objective The study aims to characterize digital dietary behaviors in depression, and to determine whether these behaviors could be used to detect depression. Methods A total of 3310 students (2222 healthy controls [HCs], 916 with mild depression, and 172 with moderate-severe depression) were recruited for the study of their dietary behaviors via electronic records over a 1-month period, and depression severity was assessed in the middle of the month. The differences in dietary behaviors across the HCs, mild depression, and moderate-severe depression were determined by ANCOVA (analyses of covariance) with age, gender, BMI, and educational level as covariates. Multivariate logistic regression analyses were used to examine the association between dietary behaviors and depression severity. Support vector machine analysis was used to determine whether changes in dietary behaviors could detect mild and moderate-severe depression. Results The study found that individuals with moderate-severe depression had more irregular eating patterns, more fluctuated feeding times, spent more money on dinner, less diverse food choices, as well as eating breakfast less frequently, and preferred to eat only lunch and dinner, compared with HCs. Moderate-severe depression was found to be negatively associated with the daily 3 regular meals pattern (breakfast-lunch-dinner pattern; OR 0.467, 95% CI 0.239-0.912), and mild depression was positively associated with daily lunch and dinner pattern (OR 1.460, 95% CI 1.016-2.100). These changes in digital dietary behaviors were able to detect mild and moderate-severe depression (accuracy=0.53, precision=0.60), with better accuracy for detecting moderate-severe depression (accuracy=0.67, precision=0.64). Conclusions This is the first study to develop a profile of changes in digital dietary behaviors in individuals with depression using real-world behavioral monitoring. The results suggest that digital markers may be a promising approach for detecting depression.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烤了那只蠢鸡完成签到,获得积分10
刚刚
2秒前
平淡雅阳完成签到,获得积分10
2秒前
pwq发布了新的文献求助10
5秒前
nini发布了新的文献求助10
5秒前
一一完成签到,获得积分10
6秒前
汉堡包应助威武小猫咪采纳,获得10
9秒前
9秒前
13秒前
菜鸡游泳发布了新的文献求助10
14秒前
SiO2完成签到 ,获得积分0
15秒前
15秒前
君寻完成签到 ,获得积分10
16秒前
16秒前
16秒前
小蘑菇应助babalababa采纳,获得10
17秒前
17秒前
18秒前
中标发布了新的文献求助10
20秒前
20秒前
20秒前
公西凝芙发布了新的文献求助10
22秒前
24秒前
25秒前
25秒前
25秒前
Royal耗子完成签到,获得积分10
27秒前
haobhaobhaob发布了新的文献求助10
28秒前
29秒前
科研通AI5应助豆豆可采纳,获得10
29秒前
30秒前
Royal耗子发布了新的文献求助10
30秒前
慕青应助诺贝尔一直讲采纳,获得30
31秒前
公西凝芙完成签到,获得积分10
31秒前
科研通AI6应助弎夜采纳,获得30
31秒前
langqi发布了新的文献求助10
32秒前
Miya发布了新的文献求助30
32秒前
33秒前
haobhaobhaob完成签到,获得积分10
35秒前
凯蒂发布了新的文献求助10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610031
求助须知:如何正确求助?哪些是违规求助? 4016179
关于积分的说明 12434575
捐赠科研通 3697585
什么是DOI,文献DOI怎么找? 2038909
邀请新用户注册赠送积分活动 1071843
科研通“疑难数据库(出版商)”最低求助积分说明 955542