亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Real-time Pedestrian Detection Using Resource Constrained Embedded Platforms – A Review

行人 行人检测 计算机科学 资源(消歧) 嵌入式系统 实时计算 计算机网络 工程类 运输工程
作者
Grace Cocks,Teresito Magbag,Maryam Hemmati,Kevin I‐Kai Wang
标识
DOI:10.1109/swc57546.2023.10448873
摘要

Autonomous Vehicles (AV) are currently limited to the sensors fitted on the vehicle itself to detect pedestrians instead of working collaboratively with the road side units (RSUs). If Resource Constrained Embedded Platforms (RCEPs) were capable of achieving real-time pedestrian detection, they could be deployed at busy traffic intersections to assist AVs. Currently, high-end GPU platforms are required to achieve real-time performance, but their size and cost mean they are not viable for deployment at busy traffic intersections. Therefore, this study performs a comparative analysis as to the ability of RCEPs to achieve real-time pedestrian detection using Convolutional Neural Network (CNN) architectures. Several CNN architectures were trained on a custom pedestrian dataset, with Tiny Yolov4 achieving 62% mean average precision (mAP). When deployed, this analysis indicates that some RCEPs are capable of achieving real-time pedestrian detection, benchmarked at 30FPS, with Tiny YOLOv4 achieving 40.48FPS on the NVIDIA Jetson Nano. The Raspberry Pi 4 paired with the Google Edge TPU also exceeded the real-time threshold, achieving 51.22FPS using MobileNetV2-SSD. Both models were quantized at FP16 and UINT8, which inherently have lower accuracy in favour of faster inferencing. Our analysis evaluates the real-time performance of the selected embedded devices when hosting lightweight CNNs, as well as offering numerous future research directions to improve the pedestrian detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助米儿采纳,获得10
23秒前
执着的忻发布了新的文献求助10
24秒前
25秒前
25秒前
hu完成签到,获得积分10
26秒前
hu发布了新的文献求助10
31秒前
32秒前
YZH完成签到,获得积分10
43秒前
狂野的安彤完成签到,获得积分10
44秒前
Akim应助科研通管家采纳,获得10
45秒前
1分钟前
1分钟前
1分钟前
破茧发布了新的文献求助10
2分钟前
cacaldon完成签到,获得积分10
2分钟前
执着的忻完成签到,获得积分10
3分钟前
3分钟前
米儿发布了新的文献求助10
3分钟前
zsmj23完成签到 ,获得积分0
4分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
科研通AI5应助科研通管家采纳,获得30
4分钟前
nick完成签到,获得积分10
4分钟前
5分钟前
yuqian发布了新的文献求助10
5分钟前
yuqian完成签到,获得积分20
5分钟前
TXZ06完成签到,获得积分10
5分钟前
nav完成签到 ,获得积分10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
科研通AI5应助科研通管家采纳,获得10
6分钟前
zh完成签到 ,获得积分10
7分钟前
8分钟前
火星完成签到 ,获得积分10
8分钟前
一颗忧伤的覆盆子完成签到,获得积分10
8分钟前
科研通AI5应助yelide采纳,获得20
8分钟前
8分钟前
yelide发布了新的文献求助20
8分钟前
完美世界应助科研通管家采纳,获得10
8分钟前
Tingting完成签到 ,获得积分10
10分钟前
33完成签到,获得积分0
11分钟前
11分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491347
求助须知:如何正确求助?哪些是违规求助? 3077934
关于积分的说明 9151255
捐赠科研通 2770497
什么是DOI,文献DOI怎么找? 1520516
邀请新用户注册赠送积分活动 704589
科研通“疑难数据库(出版商)”最低求助积分说明 702298