Bias of AI-generated content: an examination of news produced by large language models

种族(生物学) 内容(测量理论) 性别偏见 内容分析 心理学 计算机科学 社会心理学 性别研究 社会学 数学 社会科学 数学分析
作者
Xiao Fang,Shangkun Che,Minjia Mao,Hongzhe Zhang,Ming Zhao,Xiaohang Zhao
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1) 被引量:24
标识
DOI:10.1038/s41598-024-55686-2
摘要

Abstract Large language models (LLMs) have the potential to transform our lives and work through the content they generate, known as AI-Generated Content (AIGC). To harness this transformation, we need to understand the limitations of LLMs. Here, we investigate the bias of AIGC produced by seven representative LLMs, including ChatGPT and LLaMA. We collect news articles from The New York Times and Reuters, both known for their dedication to provide unbiased news. We then apply each examined LLM to generate news content with headlines of these news articles as prompts, and evaluate the gender and racial biases of the AIGC produced by the LLM by comparing the AIGC and the original news articles. We further analyze the gender bias of each LLM under biased prompts by adding gender-biased messages to prompts constructed from these news headlines. Our study reveals that the AIGC produced by each examined LLM demonstrates substantial gender and racial biases. Moreover, the AIGC generated by each LLM exhibits notable discrimination against females and individuals of the Black race. Among the LLMs, the AIGC generated by ChatGPT demonstrates the lowest level of bias, and ChatGPT is the sole model capable of declining content generation when provided with biased prompts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助鹏哥爱科研采纳,获得10
刚刚
1秒前
星辰大海应助a雪橙采纳,获得10
1秒前
小九发布了新的文献求助10
1秒前
若有光发布了新的文献求助10
3秒前
听话的幼蓉完成签到,获得积分20
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
3秒前
大模型应助科研通管家采纳,获得10
4秒前
毛豆应助科研通管家采纳,获得10
4秒前
66666发布了新的文献求助100
4秒前
4秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
毛豆应助科研通管家采纳,获得10
4秒前
毛豆应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
今后应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
Qiao应助科研通管家采纳,获得10
4秒前
4秒前
Ceng发布了新的文献求助10
4秒前
LJ发布了新的文献求助10
5秒前
5秒前
珈小羽完成签到,获得积分10
6秒前
qzw完成签到,获得积分10
7秒前
7秒前
illion1发布了新的文献求助10
8秒前
科研通AI2S应助听话的幼蓉采纳,获得10
8秒前
花菜炒肉发布了新的文献求助30
9秒前
华仔应助lalala采纳,获得10
10秒前
10秒前
百邪灵完成签到,获得积分10
10秒前
Seven37发布了新的文献求助10
10秒前
科研通AI2S应助小鱼采纳,获得10
11秒前
11秒前
不可说完成签到,获得积分10
12秒前
jiujiu完成签到,获得积分20
13秒前
FashionBoy应助Zhang采纳,获得10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307009
求助须知:如何正确求助?哪些是违规求助? 2940878
关于积分的说明 8498950
捐赠科研通 2614965
什么是DOI,文献DOI怎么找? 1428599
科研通“疑难数据库(出版商)”最低求助积分说明 663478
邀请新用户注册赠送积分活动 648318