Critical evaluation of artificial intelligence as a digital twin of pathologists for prostate cancer pathology

医学 分级(工程) 一致性 前列腺癌 前列腺切除术 前列腺 直肠检查 H&E染色 病理 活检 数字化病理学 外科病理学 前列腺活检 癌症 内科学 染色 生物 生态学
作者
Okyaz Eminağa,Mahmoud Abbas,Christian A. Kunder,Yuri Tolkach,Ryan Han,James D. Brooks,Rosalie Nolley,Axel Semjonow,Martin Boegemann,Robert B. West,Jonathan Z. Long,Richard E. Fan,Olaf Bettendorf
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-55228-w
摘要

Abstract Prostate cancer pathology plays a crucial role in clinical management but is time-consuming. Artificial intelligence (AI) shows promise in detecting prostate cancer and grading patterns. We tested an AI-based digital twin of a pathologist, vPatho, on 2603 histological images of prostate tissue stained with hematoxylin and eosin. We analyzed various factors influencing tumor grade discordance between the vPatho system and six human pathologists. Our results demonstrated that vPatho achieved comparable performance in prostate cancer detection and tumor volume estimation, as reported in the literature. The concordance levels between vPatho and human pathologists were examined. Notably, moderate to substantial agreement was observed in identifying complementary histological features such as ductal, cribriform, nerve, blood vessel, and lymphocyte infiltration. However, concordance in tumor grading decreased when applied to prostatectomy specimens (κ = 0.44) compared to biopsy cores (κ = 0.70). Adjusting the decision threshold for the secondary Gleason pattern from 5 to 10% improved the concordance level between pathologists and vPatho for tumor grading on prostatectomy specimens (κ from 0.44 to 0.64). Potential causes of grade discordance included the vertical extent of tumors toward the prostate boundary and the proportions of slides with prostate cancer. Gleason pattern 4 was particularly associated with this population. Notably, the grade according to vPatho was not specific to any of the six pathologists involved in routine clinical grading. In conclusion, our study highlights the potential utility of AI in developing a digital twin for a pathologist. This approach can help uncover limitations in AI adoption and the practical application of the current grading system for prostate cancer pathology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Abby应助可研采纳,获得10
刚刚
小二郎应助FFFFF采纳,获得10
1秒前
ZSWAA发布了新的文献求助10
2秒前
2秒前
小李发布了新的文献求助10
3秒前
hexiaoxiao完成签到,获得积分10
4秒前
雪山飞虹发布了新的文献求助10
7秒前
Peng完成签到,获得积分20
8秒前
万能图书馆应助SDSD采纳,获得10
9秒前
9秒前
10秒前
ys1111xiao完成签到 ,获得积分10
11秒前
胡一刀完成签到,获得积分10
11秒前
科研人员完成签到,获得积分10
11秒前
12秒前
14秒前
sfz发布了新的文献求助10
14秒前
丰知然应助Makkki采纳,获得10
15秒前
文艺的念之完成签到 ,获得积分10
16秒前
QXS发布了新的文献求助10
16秒前
AixLeft发布了新的文献求助10
16秒前
明理的绮山完成签到,获得积分10
16秒前
药勺儿完成签到,获得积分10
17秒前
18秒前
18秒前
Echodeng发布了新的文献求助10
19秒前
ys1111完成签到 ,获得积分10
19秒前
北大西洋暖池完成签到,获得积分10
19秒前
20秒前
FFFFF发布了新的文献求助10
20秒前
20秒前
潇洒芫完成签到,获得积分10
20秒前
天真的羊青完成签到 ,获得积分10
21秒前
21秒前
YY发布了新的文献求助10
22秒前
23秒前
Yeshenyue发布了新的文献求助10
24秒前
彭于晏应助sfz采纳,获得10
24秒前
linxiangFYYY发布了新的文献求助10
25秒前
xyy9919完成签到,获得积分10
25秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 700
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3293800
求助须知:如何正确求助?哪些是违规求助? 2929787
关于积分的说明 8443446
捐赠科研通 2601893
什么是DOI,文献DOI怎么找? 1420184
科研通“疑难数据库(出版商)”最低求助积分说明 660516
邀请新用户注册赠送积分活动 643167