Deformation in transcatheter heart valves: Clinical implications and considerations

医学 心脏病学 狭窄 内科学 阀门更换 心脏骨骼 心脏瓣膜 主动脉瓣 变形(气象学) 主动脉瓣置换术 物理 气象学
作者
Miho Fukui,João L. Cavalcante,Vinayak Bapat
出处
期刊:Journal of Cardiology [Elsevier]
卷期号:83 (6): 351-358 被引量:1
标识
DOI:10.1016/j.jjcc.2024.02.011
摘要

Transcatheter aortic valve replacement (TAVR) has emerged as a preferred treatment modality for aortic stenosis, marking a significant advancement in cardiac interventions. Transcatheter heart valves (THVs) have also received approval for treating failed bioprosthetic valves and rings across aortic, mitral, tricuspid, and pulmonic positions. Unlike surgically implanted valves, which are sewn into the annulus, THVs are anchored through relative oversizing. Although THVs are designed to function optimally in a fully expanded state, they exhibit a certain degree of tolerance to underexpansion. However, significant deformation beyond this tolerance can adversely affect the valve's hemodynamics and durability, ultimately impacting patient outcomes. Such post-implantation deviations from the valve's intended three-dimensional design are influenced by a variety of physiological and anatomical factors unique to each patient and procedure, leading to underexpansion, eccentric expansion, and vertical deformation. These deformation patterns increase leaflet stress and strain, potentially causing fatigue and damage. This review article delves into the extent of THV deformation, its impact on leaflet function, hypoattenuating leaflet thickening, and structural valve degeneration. It provides an in-depth analysis of deformation specifics in different procedural contexts, including TAVR in native aortic stenosis, aortic and mitral valve-in-valve procedures, and redo-TAVR. Additionally, the review discusses strategies to mitigate THV deformation during the procedure, offering insights into potential solutions to these challenges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
852应助sy采纳,获得10
3秒前
内向的小霸王完成签到,获得积分10
3秒前
4秒前
qi完成签到,获得积分10
5秒前
5秒前
6秒前
111完成签到,获得积分10
6秒前
Hello应助理想三寻采纳,获得10
6秒前
7秒前
7秒前
8秒前
iuhgnor发布了新的文献求助30
8秒前
Leebc发布了新的文献求助10
9秒前
10秒前
mm发布了新的文献求助10
11秒前
inyh59发布了新的文献求助10
11秒前
11秒前
窗户上的喵咪很无聊完成签到 ,获得积分10
12秒前
搜集达人应助慈祥的百招采纳,获得10
12秒前
健忘天问发布了新的文献求助10
12秒前
SciGPT应助艾米厄辛采纳,获得30
12秒前
12秒前
12秒前
桑葚啊发布了新的文献求助10
14秒前
Ava应助迷人的灵萱采纳,获得10
14秒前
潦草发布了新的文献求助10
15秒前
16秒前
baekstal完成签到,获得积分10
16秒前
Leebc完成签到,获得积分20
16秒前
HCN发布了新的文献求助10
17秒前
理想三寻发布了新的文献求助10
19秒前
sy发布了新的文献求助10
19秒前
19秒前
inyh59完成签到,获得积分10
20秒前
20秒前
坚强烧鹅完成签到,获得积分10
20秒前
21秒前
21秒前
Orange应助巫凝天采纳,获得10
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146297
求助须知:如何正确求助?哪些是违规求助? 2797687
关于积分的说明 7825144
捐赠科研通 2454059
什么是DOI,文献DOI怎么找? 1305990
科研通“疑难数据库(出版商)”最低求助积分说明 627630
版权声明 601503