An intercomparison of weather normalization of PM2.5 concentration using traditional statistical methods, machine learning, and chemistry transport models

CMAQ 算法 机器学习 人工智能 计算机科学 气象学 空气质量指数 物理
作者
Huang Zheng,Shaofei Kong,Shixian Zhai,Xiaoyun Sun,Yi Cheng,Liquan Yao,Congbo Song,Zhonghua Zheng,Zongbo Shi,Roy M. Harrison
出处
期刊:npj climate and atmospheric science [Nature Portfolio]
卷期号:6 (1) 被引量:10
标识
DOI:10.1038/s41612-023-00536-7
摘要

Abstract Traditional statistical methods (TSM) and machine learning (ML) methods have been widely used to separate the effects of emissions and meteorology on air pollutant concentrations, while their performance compared to the chemistry transport model has been less fully investigated. Using the Community Multiscale Air Quality Model (CMAQ) as a reference, a series of experiments was conducted to comprehensively investigate the performance of TSM (e.g., multiple linear regression and Kolmogorov–Zurbenko filter) and ML (e.g., random forest and extreme gradient boosting) approaches in quantifying the effects of emissions and meteorology on the trends of fine particulate matter (PM 2.5 ) during 2013−2017. Model performance evaluation metrics suggested that the TSM and ML methods can explain the variations of PM 2.5 with the highest performance from ML. The trends of PM 2.5 showed insignificant differences ( p > 0.05) for both the emission-related ( $${{\rm{PM}}}_{2.5}^{{\rm{EMI}}}$$ PM 2.5 EMI ) and meteorology-related components between TSM, ML, and CMAQ modeling results. $${{\rm{PM}}}_{2.5}^{{\rm{EMI}}}$$ PM 2.5 EMI estimated from ML showed the least difference to that from CMAQ. Considering the medium computing resources and low model biases, the ML method is recommended for weather normalization of PM 2.5 . Sensitivity analysis further suggested that the ML model with optimized hyperparameters and the exclusion of temporal variables in weather normalization can further produce reasonable results in emission-related trends of PM 2.5 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
薛定谔的猫完成签到,获得积分10
1秒前
留胡子的霖完成签到,获得积分10
1秒前
心灵美的白卉完成签到,获得积分20
1秒前
ZZ0901完成签到,获得积分10
1秒前
1秒前
要减肥含灵完成签到,获得积分10
2秒前
小垚完成签到,获得积分10
2秒前
spy发布了新的文献求助10
2秒前
3秒前
ddddd发布了新的文献求助10
3秒前
lw发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
zz发布了新的文献求助20
4秒前
dang完成签到,获得积分10
5秒前
5秒前
顾矜应助TANG采纳,获得10
5秒前
Mmm完成签到,获得积分20
5秒前
刘源发布了新的文献求助10
6秒前
Parsifal完成签到,获得积分10
7秒前
小酒窝周周完成签到 ,获得积分10
7秒前
7秒前
7秒前
8秒前
pluto应助科研通管家采纳,获得10
8秒前
cc发布了新的文献求助10
8秒前
田様应助科研通管家采纳,获得20
8秒前
Owen应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
momo应助科研通管家采纳,获得30
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
新新应助科研通管家采纳,获得10
9秒前
musejie应助科研通管家采纳,获得10
9秒前
nkkkk完成签到,获得积分10
9秒前
打打应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
Mmm发布了新的文献求助10
9秒前
pluto应助科研通管家采纳,获得10
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620