An intercomparison of weather normalization of PM2.5 concentration using traditional statistical methods, machine learning, and chemistry transport models

CMAQ 算法 机器学习 人工智能 计算机科学 气象学 空气质量指数 物理
作者
Huang Zheng,Shaofei Kong,Shixian Zhai,Xiaoyun Sun,Yi Cheng,Liquan Yao,Congbo Song,Zhonghua Zheng,Zongbo Shi,Roy M. Harrison
出处
期刊:npj climate and atmospheric science [Springer Nature]
卷期号:6 (1) 被引量:10
标识
DOI:10.1038/s41612-023-00536-7
摘要

Abstract Traditional statistical methods (TSM) and machine learning (ML) methods have been widely used to separate the effects of emissions and meteorology on air pollutant concentrations, while their performance compared to the chemistry transport model has been less fully investigated. Using the Community Multiscale Air Quality Model (CMAQ) as a reference, a series of experiments was conducted to comprehensively investigate the performance of TSM (e.g., multiple linear regression and Kolmogorov–Zurbenko filter) and ML (e.g., random forest and extreme gradient boosting) approaches in quantifying the effects of emissions and meteorology on the trends of fine particulate matter (PM 2.5 ) during 2013−2017. Model performance evaluation metrics suggested that the TSM and ML methods can explain the variations of PM 2.5 with the highest performance from ML. The trends of PM 2.5 showed insignificant differences ( p > 0.05) for both the emission-related ( $${{\rm{PM}}}_{2.5}^{{\rm{EMI}}}$$ PM 2.5 EMI ) and meteorology-related components between TSM, ML, and CMAQ modeling results. $${{\rm{PM}}}_{2.5}^{{\rm{EMI}}}$$ PM 2.5 EMI estimated from ML showed the least difference to that from CMAQ. Considering the medium computing resources and low model biases, the ML method is recommended for weather normalization of PM 2.5 . Sensitivity analysis further suggested that the ML model with optimized hyperparameters and the exclusion of temporal variables in weather normalization can further produce reasonable results in emission-related trends of PM 2.5 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mark完成签到 ,获得积分10
2秒前
3秒前
qiudaoyv11完成签到,获得积分10
4秒前
李西瓜发布了新的文献求助10
5秒前
燕海雪发布了新的文献求助10
7秒前
木子发布了新的文献求助10
8秒前
陈丫完成签到,获得积分10
8秒前
Henry完成签到,获得积分10
12秒前
燕海雪完成签到,获得积分10
13秒前
海4015发布了新的文献求助10
14秒前
可爱的函函应助Paul111采纳,获得10
14秒前
桐桐应助LYY采纳,获得10
15秒前
15秒前
珈蓝完成签到,获得积分10
21秒前
25秒前
科研通AI2S应助mbf采纳,获得10
28秒前
28秒前
白华苍松发布了新的文献求助10
28秒前
深情安青应助冰凌心恋采纳,获得10
29秒前
大尾巴完成签到 ,获得积分10
31秒前
脑洞疼应助彩色伯云采纳,获得30
32秒前
33秒前
34秒前
领导范儿应助大海采纳,获得10
34秒前
38秒前
myp完成签到,获得积分10
38秒前
千山完成签到,获得积分10
38秒前
andy发布了新的文献求助10
38秒前
40秒前
42秒前
芹菜煎蛋发布了新的文献求助10
45秒前
46秒前
科研通AI2S应助kkk采纳,获得10
46秒前
48秒前
今后应助andy采纳,获得10
49秒前
52秒前
LYY发布了新的文献求助10
52秒前
噜啦噜啦嘞完成签到,获得积分10
53秒前
彩色伯云发布了新的文献求助30
55秒前
海4015发布了新的文献求助10
56秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Synchrotron X-Ray Methods in Clay Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3340656
求助须知:如何正确求助?哪些是违规求助? 2968590
关于积分的说明 8634286
捐赠科研通 2648111
什么是DOI,文献DOI怎么找? 1450010
科研通“疑难数据库(出版商)”最低求助积分说明 671649
邀请新用户注册赠送积分活动 660693