Random hierarchical model for estimation of wheat yield in the North China Plain at different spatial scales

估计 一致性(知识库) 产量(工程) 比例(比率) 随机效应模型 多级模型 分层数据库模型 统计 计算机科学 环境科学 数学 数据挖掘 地理 地图学 人工智能 医学 荟萃分析 材料科学 管理 经济 内科学 冶金
作者
Xiaobin Xu,Wei He,Hongyan Zhang
出处
期刊:Field Crops Research [Elsevier]
卷期号:306: 109226-109226 被引量:2
标识
DOI:10.1016/j.fcr.2023.109226
摘要

Accurate and large-scale wheat yield prediction in the North China Plain (NCP) can provide necessary information for agricultural policies and agricultural trade. Many studies have presented wheat yield estimation methods by using existing machine learning methods and remote sensing (RS) or environmental data. However, these methods only blindly input multi-source data into the model and do not consider the hierarchical relationships and interaction between different data types. In addition, there has been scant attention paid to the consistency of yield estimation models across varying spatial scales. To address these problems, a novel dynamic yield estimation model, known as random hierarchical model (RHM), which takes into account the hierarchical relationship of multi-source data, is constructed to estimate the wheat yield in the NCP. First, the time interval of wheat growth period is refined by using the 24 solar terms in China, and a time series multi-source dataset of climate, soil, and RS is constructed. Second, the hierarchical linear model is used to layer multi-source data and randomly select environmental and RS features with multiple time intervals. Multiple hierarchical models are constructed and optimized for integration, and the interrelationships between data collected at different levels are fully utilized, which can improve the accuracy of the yield estimation models in interannual and large-scale applications. Finally, the RHM at different spatial scales is cross-verified by using the measured and statistical data of the NCP for 4 years. The results indicated that the error of the RHM estimation is smaller than that of widely used machine learning models at different spatial scales of field-level measurement data (R2 = 0.52, nRMSE = 16.43%), county-level measurement integration data (R2 = 0.62, nRMSE = 12.83%), and county-level official statistics (R2 = 0.68, nRMSE = 11.41%). Our proposed RHM that considers the hierarchical structure of multi-source data is a reliable and a promising method for improving yield estimation. In addition, heterogeneity in the hierarchical relationships is observed between the different types of data in the RHM at different spatial scales, resulting in differences in the optimal lead time for estimating yield and the importance of key driving factors in the model, indicating that the cross-spatial scale applications of the model are not allowed. This study provides insights for large-scale wheat yield estimation and yield response to different environments and provided evidence and explanation for the prohibition of generalization of models at different spatial scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咯噔发布了新的文献求助10
1秒前
1秒前
HangZ发布了新的文献求助10
2秒前
lin应助含蓄凡柔采纳,获得10
2秒前
情怀应助俭朴的一曲采纳,获得10
3秒前
3秒前
5秒前
隐形曼青应助咯噔采纳,获得10
6秒前
俏皮芹发布了新的文献求助10
6秒前
深情海亦发布了新的文献求助30
7秒前
7秒前
8秒前
打打应助zbz12138采纳,获得10
11秒前
monned完成签到,获得积分10
11秒前
崩溃发布了新的文献求助10
12秒前
柏如柏发布了新的文献求助10
13秒前
13秒前
科研小白发布了新的文献求助10
13秒前
14秒前
无花果应助key采纳,获得10
14秒前
赫如冰发布了新的文献求助10
16秒前
甜蜜雅彤应助随波逐流采纳,获得10
18秒前
南风发布了新的文献求助10
20秒前
Manzia完成签到,获得积分10
24秒前
深情海亦完成签到,获得积分10
25秒前
26秒前
pyhua完成签到,获得积分10
26秒前
27秒前
28秒前
上官若男应助hay采纳,获得10
29秒前
30秒前
31秒前
key发布了新的文献求助10
31秒前
33秒前
33秒前
33秒前
寻雪完成签到,获得积分20
34秒前
乖巧的菜猪完成签到,获得积分10
34秒前
w_应助崩溃采纳,获得10
34秒前
35秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3076389
求助须知:如何正确求助?哪些是违规求助? 2729242
关于积分的说明 7508108
捐赠科研通 2377477
什么是DOI,文献DOI怎么找? 1260632
科研通“疑难数据库(出版商)”最低求助积分说明 611101
版权声明 597194