Random hierarchical model for estimation of wheat yield in the North China Plain at different spatial scales

估计 一致性(知识库) 产量(工程) 比例(比率) 随机效应模型 多级模型 分层数据库模型 统计 计算机科学 环境科学 数学 数据挖掘 地理 地图学 人工智能 医学 荟萃分析 材料科学 管理 经济 内科学 冶金
作者
Xiaobin Xu,Wei He,Hongyan Zhang
出处
期刊:Field Crops Research [Elsevier]
卷期号:306: 109226-109226 被引量:2
标识
DOI:10.1016/j.fcr.2023.109226
摘要

Accurate and large-scale wheat yield prediction in the North China Plain (NCP) can provide necessary information for agricultural policies and agricultural trade. Many studies have presented wheat yield estimation methods by using existing machine learning methods and remote sensing (RS) or environmental data. However, these methods only blindly input multi-source data into the model and do not consider the hierarchical relationships and interaction between different data types. In addition, there has been scant attention paid to the consistency of yield estimation models across varying spatial scales. To address these problems, a novel dynamic yield estimation model, known as random hierarchical model (RHM), which takes into account the hierarchical relationship of multi-source data, is constructed to estimate the wheat yield in the NCP. First, the time interval of wheat growth period is refined by using the 24 solar terms in China, and a time series multi-source dataset of climate, soil, and RS is constructed. Second, the hierarchical linear model is used to layer multi-source data and randomly select environmental and RS features with multiple time intervals. Multiple hierarchical models are constructed and optimized for integration, and the interrelationships between data collected at different levels are fully utilized, which can improve the accuracy of the yield estimation models in interannual and large-scale applications. Finally, the RHM at different spatial scales is cross-verified by using the measured and statistical data of the NCP for 4 years. The results indicated that the error of the RHM estimation is smaller than that of widely used machine learning models at different spatial scales of field-level measurement data (R2 = 0.52, nRMSE = 16.43%), county-level measurement integration data (R2 = 0.62, nRMSE = 12.83%), and county-level official statistics (R2 = 0.68, nRMSE = 11.41%). Our proposed RHM that considers the hierarchical structure of multi-source data is a reliable and a promising method for improving yield estimation. In addition, heterogeneity in the hierarchical relationships is observed between the different types of data in the RHM at different spatial scales, resulting in differences in the optimal lead time for estimating yield and the importance of key driving factors in the model, indicating that the cross-spatial scale applications of the model are not allowed. This study provides insights for large-scale wheat yield estimation and yield response to different environments and provided evidence and explanation for the prohibition of generalization of models at different spatial scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
17完成签到,获得积分10
刚刚
今后应助冷静的毛豆采纳,获得20
刚刚
刚刚
小马哥36发布了新的文献求助10
刚刚
ttttttuu发布了新的文献求助10
刚刚
甜美的秋凌完成签到,获得积分10
1秒前
10发布了新的文献求助10
2秒前
高高完成签到 ,获得积分10
2秒前
AAAAAAAAAAA发布了新的文献求助10
2秒前
3秒前
wxaaaa完成签到,获得积分10
3秒前
李爱国应助dd采纳,获得10
4秒前
5秒前
Jasper应助感性的凉面采纳,获得10
6秒前
6秒前
7秒前
7秒前
8秒前
情怀应助顺顺采纳,获得10
8秒前
garyaa发布了新的文献求助10
8秒前
8秒前
NexusExplorer应助奔奔采纳,获得10
8秒前
Orange应助Clean采纳,获得10
9秒前
Lucas应助ww采纳,获得10
9秒前
10秒前
ttttttuu完成签到,获得积分10
10秒前
11秒前
刘涵完成签到 ,获得积分10
11秒前
小马甲应助zhui采纳,获得10
11秒前
10完成签到,获得积分10
11秒前
11秒前
11秒前
Rainielove0215完成签到,获得积分0
12秒前
zz完成签到,获得积分10
13秒前
13秒前
kyle完成签到,获得积分10
15秒前
感性的凉面完成签到,获得积分20
15秒前
15秒前
请叫我风吹麦浪应助末岛采纳,获得10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794