Random hierarchical model for estimation of wheat yield in the North China Plain at different spatial scales

估计 一致性(知识库) 产量(工程) 比例(比率) 随机效应模型 多级模型 分层数据库模型 统计 计算机科学 环境科学 数学 数据挖掘 地理 地图学 人工智能 经济 管理 冶金 材料科学 内科学 荟萃分析 医学
作者
Xiaobin Xu,Wei He,Hongyan Zhang
出处
期刊:Field Crops Research [Elsevier BV]
卷期号:306: 109226-109226 被引量:2
标识
DOI:10.1016/j.fcr.2023.109226
摘要

Accurate and large-scale wheat yield prediction in the North China Plain (NCP) can provide necessary information for agricultural policies and agricultural trade. Many studies have presented wheat yield estimation methods by using existing machine learning methods and remote sensing (RS) or environmental data. However, these methods only blindly input multi-source data into the model and do not consider the hierarchical relationships and interaction between different data types. In addition, there has been scant attention paid to the consistency of yield estimation models across varying spatial scales. To address these problems, a novel dynamic yield estimation model, known as random hierarchical model (RHM), which takes into account the hierarchical relationship of multi-source data, is constructed to estimate the wheat yield in the NCP. First, the time interval of wheat growth period is refined by using the 24 solar terms in China, and a time series multi-source dataset of climate, soil, and RS is constructed. Second, the hierarchical linear model is used to layer multi-source data and randomly select environmental and RS features with multiple time intervals. Multiple hierarchical models are constructed and optimized for integration, and the interrelationships between data collected at different levels are fully utilized, which can improve the accuracy of the yield estimation models in interannual and large-scale applications. Finally, the RHM at different spatial scales is cross-verified by using the measured and statistical data of the NCP for 4 years. The results indicated that the error of the RHM estimation is smaller than that of widely used machine learning models at different spatial scales of field-level measurement data (R2 = 0.52, nRMSE = 16.43%), county-level measurement integration data (R2 = 0.62, nRMSE = 12.83%), and county-level official statistics (R2 = 0.68, nRMSE = 11.41%). Our proposed RHM that considers the hierarchical structure of multi-source data is a reliable and a promising method for improving yield estimation. In addition, heterogeneity in the hierarchical relationships is observed between the different types of data in the RHM at different spatial scales, resulting in differences in the optimal lead time for estimating yield and the importance of key driving factors in the model, indicating that the cross-spatial scale applications of the model are not allowed. This study provides insights for large-scale wheat yield estimation and yield response to different environments and provided evidence and explanation for the prohibition of generalization of models at different spatial scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
R_发布了新的文献求助20
刚刚
wsh完成签到,获得积分20
1秒前
hxpxp完成签到,获得积分10
2秒前
纯情的碧玉完成签到,获得积分10
2秒前
六六安安完成签到,获得积分10
2秒前
nicelily发布了新的文献求助10
2秒前
求求了接收吧完成签到,获得积分20
3秒前
Hello应助童绾绾采纳,获得10
3秒前
妍妍发布了新的文献求助10
3秒前
沙尘飞扬完成签到,获得积分10
3秒前
yy完成签到,获得积分10
4秒前
qiaoxixi发布了新的文献求助10
4秒前
4秒前
万能图书馆应助干净翠桃采纳,获得10
5秒前
5秒前
792631803发布了新的文献求助30
5秒前
down完成签到,获得积分10
6秒前
7秒前
8秒前
9秒前
妍妍完成签到,获得积分10
9秒前
杨佳睿完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
纯真毛豆完成签到,获得积分10
12秒前
千里独行侠完成签到,获得积分10
12秒前
无私的飞机完成签到,获得积分20
12秒前
阿聪发布了新的文献求助10
12秒前
罗氏集团发布了新的文献求助10
13秒前
Lily发布了新的文献求助10
13秒前
今后应助山神厘子采纳,获得10
14秒前
nan发布了新的文献求助10
14秒前
14秒前
14秒前
75986686发布了新的文献求助10
14秒前
Akim应助Ljc采纳,获得10
14秒前
沙尘飞扬发布了新的文献求助100
15秒前
周常通发布了新的文献求助10
15秒前
干净翠桃发布了新的文献求助10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951758
求助须知:如何正确求助?哪些是违规求助? 3497124
关于积分的说明 11086059
捐赠科研通 3227597
什么是DOI,文献DOI怎么找? 1784497
邀请新用户注册赠送积分活动 868586
科研通“疑难数据库(出版商)”最低求助积分说明 801154