Spatial–Temporal Graph Attention Gated Recurrent Transformer Network for Traffic Flow Forecasting

计算机科学 变压器 数据挖掘 短时记忆 图形 实时计算 人工智能 机器学习 理论计算机科学 循环神经网络 工程类 人工神经网络 电气工程 电压
作者
Wu Di,Kai Peng,Shangguang Wang,Victor C. M. Leung
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (8): 14267-14281 被引量:10
标识
DOI:10.1109/jiot.2023.3340182
摘要

With the significant increase in the number of motor vehicles, road-related issues such as traffic congestion and accidents have also escalated. The development of an accurate and efficient traffic flow forecasting model is essential for helping car owners plan their journeys. Despite advancements in forecasting models, there are three remaining issues: (i) failing to effectively use cyclical data; (ii) failing to adequately capture spatial dependencies; and (iii) high time complexity and memory usage. To tackle the aforementioned challenges, we present a novel Spatial-Temporal Graph Attention Gated Recurrent Transformer Network (STGAGRTN) for traffic flow forecasting. Specifically, the use of a Spatial Transformer module allows for the extraction of dynamic spatial dependencies among individual nodes, going beyond the limitation of only considering neighboring nodes. Subsequently, we propose a Temporal Transformer to extract periodic information from traffic data and capture long-term dependencies. Additionally, we utilize two additional classical techniques to complement the aforementioned modules for extracting characteristics. By incorporating comprehensive spatial-temporal characteristics into our model, we can accurately predict multiple nodes simultaneously. Finally, we have successfully optimized the computational complexity of the Transformer module from O(n2) to O(nlogn). Our model has undergone extensive testing on four authentic datasets, providing compelling evidence of its superior predictive capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助独特的苗条采纳,获得10
1秒前
1秒前
唠叨的富发布了新的文献求助30
1秒前
1秒前
2秒前
3秒前
gao发布了新的文献求助10
3秒前
Mark给Mark的求助进行了留言
4秒前
4秒前
yucj发布了新的文献求助10
5秒前
6秒前
6秒前
彭于晏应助zsj3787采纳,获得10
6秒前
7秒前
7秒前
7秒前
7秒前
嘿撒发布了新的文献求助10
7秒前
wyy发布了新的文献求助10
8秒前
坚定自信完成签到,获得积分20
9秒前
南玖完成签到,获得积分10
9秒前
10秒前
mx应助BRID采纳,获得10
10秒前
不二臣发布了新的文献求助10
10秒前
10秒前
yucj完成签到,获得积分10
10秒前
10秒前
赘婿应助尊敬的芷卉采纳,获得10
10秒前
11秒前
禅花游鱼发布了新的文献求助20
11秒前
11秒前
kelvin_wang发布了新的文献求助10
12秒前
12秒前
Yuan完成签到,获得积分10
12秒前
狂野忆文发布了新的文献求助10
13秒前
Ultraman完成签到,获得积分10
13秒前
hah发布了新的文献求助10
13秒前
嘿撒完成签到,获得积分20
14秒前
思源应助wyy采纳,获得10
14秒前
olivia发布了新的文献求助10
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961675
求助须知:如何正确求助?哪些是违规求助? 3507998
关于积分的说明 11139238
捐赠科研通 3240579
什么是DOI,文献DOI怎么找? 1791017
邀请新用户注册赠送积分活动 872696
科研通“疑难数据库(出版商)”最低求助积分说明 803326