重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Spatial–Temporal Graph Attention Gated Recurrent Transformer Network for Traffic Flow Forecasting

计算机科学 变压器 数据挖掘 短时记忆 图形 实时计算 人工智能 机器学习 理论计算机科学 循环神经网络 工程类 电压 人工神经网络 电气工程
作者
Wu Di,Kai Peng,Shangguang Wang,Victor C. M. Leung
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (8): 14267-14281 被引量:10
标识
DOI:10.1109/jiot.2023.3340182
摘要

With the significant increase in the number of motor vehicles, road-related issues such as traffic congestion and accidents have also escalated. The development of an accurate and efficient traffic flow forecasting model is essential for helping car owners plan their journeys. Despite advancements in forecasting models, there are three remaining issues: (i) failing to effectively use cyclical data; (ii) failing to adequately capture spatial dependencies; and (iii) high time complexity and memory usage. To tackle the aforementioned challenges, we present a novel Spatial-Temporal Graph Attention Gated Recurrent Transformer Network (STGAGRTN) for traffic flow forecasting. Specifically, the use of a Spatial Transformer module allows for the extraction of dynamic spatial dependencies among individual nodes, going beyond the limitation of only considering neighboring nodes. Subsequently, we propose a Temporal Transformer to extract periodic information from traffic data and capture long-term dependencies. Additionally, we utilize two additional classical techniques to complement the aforementioned modules for extracting characteristics. By incorporating comprehensive spatial-temporal characteristics into our model, we can accurately predict multiple nodes simultaneously. Finally, we have successfully optimized the computational complexity of the Transformer module from O(n2) to O(nlogn). Our model has undergone extensive testing on four authentic datasets, providing compelling evidence of its superior predictive capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助...采纳,获得10
刚刚
1秒前
dw发布了新的文献求助10
1秒前
淡淡的冰颜完成签到,获得积分10
1秒前
1秒前
科研通AI6应助fly采纳,获得10
1秒前
1秒前
one time完成签到 ,获得积分10
1秒前
2秒前
2秒前
2秒前
所所应助牧木采纳,获得10
2秒前
2秒前
初七123完成签到,获得积分10
3秒前
和谐乐完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
gaozzz完成签到 ,获得积分10
4秒前
哲哩个贤发布了新的文献求助30
4秒前
烟花应助猪猪hero采纳,获得10
4秒前
zimu012发布了新的文献求助10
5秒前
123noo发布了新的文献求助10
5秒前
5秒前
贪玩幻莲发布了新的文献求助10
5秒前
吃颗电池发布了新的文献求助10
5秒前
6秒前
6秒前
smlz关注了科研通微信公众号
6秒前
6秒前
orixero应助jjy采纳,获得30
6秒前
6秒前
6秒前
清脆的一斩完成签到 ,获得积分10
6秒前
6秒前
初七123发布了新的文献求助10
6秒前
缓慢冷风发布了新的文献求助10
7秒前
egret发布了新的文献求助30
7秒前
7秒前
Dora发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467299
求助须知:如何正确求助?哪些是违规求助? 4571085
关于积分的说明 14328325
捐赠科研通 4497634
什么是DOI,文献DOI怎么找? 2464057
邀请新用户注册赠送积分活动 1452861
关于科研通互助平台的介绍 1427654