Rapid visualization of PD-L1 expression level in glioblastoma immune microenvironment via machine learning cascade-based Raman histopathology

组织病理学 胶质瘤 免疫疗法 肿瘤微环境 组织微阵列 病理 癌症研究 医学 免疫组织化学 免疫系统 计算机科学 免疫学
作者
Qing-Qing Zhou,Jingxing Guo,Ziyang Wang,Jianrui Li,Chen Meng,Qiang Xu,Li-jun Zhu,Qing-Qing Zhou,Qiang Wang,Hao Pan,Jing Pan,Yong Zhu,Minju Song,Xiaoxue Liu,Jiandong Wang,Zhiqiang Zhang,Long Jiang Zhang,Yiqing Wang,Huiming Cai,Xiaohong Chen,Guangming Lu
出处
期刊:Journal of Advanced Research [Elsevier]
被引量:1
标识
DOI:10.1016/j.jare.2023.12.002
摘要

Combination immunotherapy holds promise for improving survival in responsive glioblastoma (GBM) patients. Programmed death-ligand 1 (PD-L1) expression in immune microenvironment (IME) is the most important predictive biomarker for immunotherapy. Due to the heterogeneous distribution of PD-L1, post-operative histopathology fails to accurately capture its expression in residual tumors, making intra-operative diagnosis crucial for GBM treatment strategies. However, the current methods for evaluating the expression of PD-L1 are still time-consuming. To overcome the PD-L1 heterogeneity and enable rapid, accurate, and label-free imaging of PD-L1 expression level in GBM IME at the tissue level. We proposed a novel intra-operative diagnostic method, Machine Learning Cascade (MLC)-based Raman histopathology, which uses a coordinate localization system (CLS), hierarchical clustering analysis (HCA), support vector machine (SVM), and similarity analysis (SA). This method enables visualization of PD-L1 expression in glioma cells, CD8+ T cells, macrophages, and normal cells in addition to the tumor/normal boundary. The study quantified PD-L1 expression levels using the tumor proportion, combined positive, and cellular composition scores (TPS, CPS, and CCS, respectively) based on Raman data. Furthermore, the association between Raman spectral features and biomolecules was examined biochemically. The entire process from signal collection to visualization could be completed within 30 minutes. In an orthotopic glioma mouse model, the MLC-based Raman histopathology demonstrated a high average accuracy (0.990) for identifying different cells and exhibited strong concordance with multiplex immunofluorescence (84.31%) and traditional pathologists' scoring (R2 ≥ 0.9). Moreover, the peak intensities at 837 and 874 cm-1 showed a positive linear correlation with PD-L1 expression level. This study introduced a new and extendable diagnostic method to achieve rapid and accurate visualization of PD-L1 expression in GBM IMB at the tissular level, leading to great potential in GBM intraoperative diagnosis for guiding surgery and post-operative immunotherapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
景平完成签到,获得积分10
刚刚
tszjw168完成签到 ,获得积分10
刚刚
LiLi完成签到,获得积分10
1秒前
Ashao完成签到,获得积分10
1秒前
充电宝应助积极的雪莲采纳,获得10
1秒前
yuan完成签到,获得积分10
2秒前
淡定太兰完成签到 ,获得积分10
2秒前
橙酒完成签到,获得积分10
3秒前
滑稽帝完成签到,获得积分10
3秒前
叶燕完成签到 ,获得积分10
3秒前
吕yj完成签到,获得积分10
4秒前
4秒前
111发布了新的文献求助10
4秒前
5秒前
行舟完成签到 ,获得积分10
5秒前
Pa1mary完成签到 ,获得积分10
5秒前
果壳茉莉拌沙拉完成签到,获得积分10
6秒前
6秒前
7秒前
虾子完成签到,获得积分10
7秒前
黄豆完成签到,获得积分10
7秒前
zyh发布了新的文献求助30
7秒前
yuji4268发布了新的文献求助10
8秒前
索兰黛尔完成签到,获得积分10
9秒前
9秒前
小瑜完成签到,获得积分10
9秒前
9秒前
默默松鼠完成签到,获得积分10
10秒前
自由如天完成签到,获得积分10
11秒前
无限的可乐完成签到,获得积分10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
11完成签到 ,获得积分10
11秒前
Frank应助科研通管家采纳,获得10
11秒前
萧萧应助科研通管家采纳,获得10
11秒前
cccjjjhhh完成签到,获得积分10
11秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
英姑应助科研通管家采纳,获得10
12秒前
Frank应助科研通管家采纳,获得10
12秒前
qqq完成签到 ,获得积分10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671659
求助须知:如何正确求助?哪些是违规求助? 4921045
关于积分的说明 15135488
捐赠科研通 4830525
什么是DOI,文献DOI怎么找? 2587125
邀请新用户注册赠送积分活动 1540733
关于科研通互助平台的介绍 1499131