Rapid visualization of PD-L1 expression level in glioblastoma immune microenvironment via machine learning cascade-based Raman histopathology

组织病理学 胶质瘤 免疫疗法 肿瘤微环境 组织微阵列 病理 癌症研究 医学 免疫组织化学 免疫系统 计算机科学 免疫学
作者
Qing-Qing Zhou,Jingxing Guo,Ziyang Wang,Jianrui Li,Chen Meng,Qiang Xu,Li-jun Zhu,Qing-Qing Zhou,Qiang Wang,Hao Pan,Jing Pan,Yong Zhu,Minju Song,Xiaoxue Liu,Jiandong Wang,Zhiqiang Zhang,Long Jiang Zhang,Yiqing Wang,Huiming Cai,Xiaohong Chen,Guangming Lu
出处
期刊:Journal of Advanced Research [Elsevier]
被引量:1
标识
DOI:10.1016/j.jare.2023.12.002
摘要

Combination immunotherapy holds promise for improving survival in responsive glioblastoma (GBM) patients. Programmed death-ligand 1 (PD-L1) expression in immune microenvironment (IME) is the most important predictive biomarker for immunotherapy. Due to the heterogeneous distribution of PD-L1, post-operative histopathology fails to accurately capture its expression in residual tumors, making intra-operative diagnosis crucial for GBM treatment strategies. However, the current methods for evaluating the expression of PD-L1 are still time-consuming. To overcome the PD-L1 heterogeneity and enable rapid, accurate, and label-free imaging of PD-L1 expression level in GBM IME at the tissue level. We proposed a novel intra-operative diagnostic method, Machine Learning Cascade (MLC)-based Raman histopathology, which uses a coordinate localization system (CLS), hierarchical clustering analysis (HCA), support vector machine (SVM), and similarity analysis (SA). This method enables visualization of PD-L1 expression in glioma cells, CD8+ T cells, macrophages, and normal cells in addition to the tumor/normal boundary. The study quantified PD-L1 expression levels using the tumor proportion, combined positive, and cellular composition scores (TPS, CPS, and CCS, respectively) based on Raman data. Furthermore, the association between Raman spectral features and biomolecules was examined biochemically. The entire process from signal collection to visualization could be completed within 30 minutes. In an orthotopic glioma mouse model, the MLC-based Raman histopathology demonstrated a high average accuracy (0.990) for identifying different cells and exhibited strong concordance with multiplex immunofluorescence (84.31%) and traditional pathologists' scoring (R2 ≥ 0.9). Moreover, the peak intensities at 837 and 874 cm-1 showed a positive linear correlation with PD-L1 expression level. This study introduced a new and extendable diagnostic method to achieve rapid and accurate visualization of PD-L1 expression in GBM IMB at the tissular level, leading to great potential in GBM intraoperative diagnosis for guiding surgery and post-operative immunotherapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
LULU完成签到,获得积分10
2秒前
Vanilla发布了新的文献求助10
2秒前
2秒前
dingm2完成签到 ,获得积分10
4秒前
pangpang发布了新的文献求助10
4秒前
冷傲的擎汉完成签到 ,获得积分10
5秒前
现代书雪发布了新的文献求助10
5秒前
Jasper应助Lisheng000采纳,获得10
6秒前
友好聋五完成签到,获得积分10
7秒前
Hello应助年轻羿采纳,获得10
9秒前
shilong.yang发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
pangpang完成签到,获得积分10
9秒前
Denmark发布了新的文献求助10
11秒前
杨立胜完成签到,获得积分10
11秒前
飘零枫叶发布了新的文献求助10
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
WangWaud发布了新的文献求助30
13秒前
14秒前
安安完成签到 ,获得积分10
16秒前
钇铷完成签到,获得积分10
17秒前
SciGPT应助清爽博超采纳,获得10
17秒前
zby完成签到,获得积分10
18秒前
sunshine0401发布了新的文献求助200
19秒前
19秒前
椿人发布了新的文献求助10
19秒前
爆米花应助sunzhuxi采纳,获得10
20秒前
科研通AI2S应助111采纳,获得10
20秒前
悦耳白山应助Vanilla采纳,获得10
21秒前
21秒前
DavidWebb发布了新的文献求助10
23秒前
24秒前
26秒前
年轻羿发布了新的文献求助10
26秒前
眼睛大的乐儿完成签到,获得积分10
27秒前
27秒前
mianmian0118完成签到 ,获得积分10
28秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5749404
求助须知:如何正确求助?哪些是违规求助? 5458546
关于积分的说明 15363524
捐赠科研通 4888849
什么是DOI,文献DOI怎么找? 2628731
邀请新用户注册赠送积分活动 1577009
关于科研通互助平台的介绍 1533742