Rapid visualization of PD-L1 expression level in glioblastoma immune microenvironment via machine learning cascade-based Raman histopathology

组织病理学 胶质瘤 免疫疗法 肿瘤微环境 组织微阵列 病理 癌症研究 医学 免疫组织化学 免疫系统 计算机科学 免疫学
作者
Qing-Qing Zhou,Jingxing Guo,Ziyang Wang,Jianrui Li,Chen Meng,Qiang Xu,Li-jun Zhu,Qing-Qing Zhou,Qiang Wang,Hao Pan,Jing Pan,Yong Zhu,Minju Song,Xiaoxue Liu,Jiandong Wang,Zhiqiang Zhang,Long Jiang Zhang,Yiqing Wang,Huiming Cai,Xiaohong Chen,Guangming Lu
出处
期刊:Journal of Advanced Research [Elsevier]
被引量:1
标识
DOI:10.1016/j.jare.2023.12.002
摘要

Combination immunotherapy holds promise for improving survival in responsive glioblastoma (GBM) patients. Programmed death-ligand 1 (PD-L1) expression in immune microenvironment (IME) is the most important predictive biomarker for immunotherapy. Due to the heterogeneous distribution of PD-L1, post-operative histopathology fails to accurately capture its expression in residual tumors, making intra-operative diagnosis crucial for GBM treatment strategies. However, the current methods for evaluating the expression of PD-L1 are still time-consuming. To overcome the PD-L1 heterogeneity and enable rapid, accurate, and label-free imaging of PD-L1 expression level in GBM IME at the tissue level. We proposed a novel intra-operative diagnostic method, Machine Learning Cascade (MLC)-based Raman histopathology, which uses a coordinate localization system (CLS), hierarchical clustering analysis (HCA), support vector machine (SVM), and similarity analysis (SA). This method enables visualization of PD-L1 expression in glioma cells, CD8+ T cells, macrophages, and normal cells in addition to the tumor/normal boundary. The study quantified PD-L1 expression levels using the tumor proportion, combined positive, and cellular composition scores (TPS, CPS, and CCS, respectively) based on Raman data. Furthermore, the association between Raman spectral features and biomolecules was examined biochemically. The entire process from signal collection to visualization could be completed within 30 minutes. In an orthotopic glioma mouse model, the MLC-based Raman histopathology demonstrated a high average accuracy (0.990) for identifying different cells and exhibited strong concordance with multiplex immunofluorescence (84.31%) and traditional pathologists' scoring (R2 ≥ 0.9). Moreover, the peak intensities at 837 and 874 cm-1 showed a positive linear correlation with PD-L1 expression level. This study introduced a new and extendable diagnostic method to achieve rapid and accurate visualization of PD-L1 expression in GBM IMB at the tissular level, leading to great potential in GBM intraoperative diagnosis for guiding surgery and post-operative immunotherapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jessicazhong完成签到,获得积分10
刚刚
好运常在完成签到,获得积分10
刚刚
zzzddd完成签到,获得积分10
1秒前
wp4455777完成签到,获得积分10
1秒前
再沉默完成签到,获得积分10
2秒前
SaSa完成签到,获得积分10
2秒前
qi完成签到,获得积分10
3秒前
叶95完成签到 ,获得积分10
3秒前
独特纸飞机完成签到 ,获得积分10
3秒前
顺心的书包完成签到,获得积分10
4秒前
寒冰完成签到,获得积分10
4秒前
李彪发布了新的文献求助10
5秒前
GOD伟完成签到,获得积分0
5秒前
量子星尘发布了新的文献求助10
6秒前
长孙烙完成签到 ,获得积分10
6秒前
热心的灵凡应助烈阳初现采纳,获得10
7秒前
无宇伦比完成签到,获得积分10
7秒前
啵啵奶冻完成签到 ,获得积分10
8秒前
拼搏的青雪完成签到 ,获得积分10
8秒前
大模型应助Cassie采纳,获得10
8秒前
misa完成签到 ,获得积分10
9秒前
9秒前
公西翠萱完成签到,获得积分10
10秒前
WangXinkui完成签到,获得积分10
10秒前
10秒前
FlyingAxe完成签到,获得积分10
11秒前
12秒前
妮妮完成签到,获得积分10
12秒前
meimale完成签到,获得积分10
12秒前
13秒前
Coolkid2001完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
magic7完成签到,获得积分10
13秒前
无辜的蜻蜓完成签到 ,获得积分10
14秒前
毛哥看文献完成签到 ,获得积分10
14秒前
大块完成签到 ,获得积分10
14秒前
14秒前
无悔呀完成签到,获得积分10
15秒前
哈哈完成签到,获得积分10
15秒前
等风来完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664825
求助须知:如何正确求助?哪些是违规求助? 4870916
关于积分的说明 15108980
捐赠科研通 4823643
什么是DOI,文献DOI怎么找? 2582450
邀请新用户注册赠送积分活动 1536469
关于科研通互助平台的介绍 1495006