Rapid visualization of PD-L1 expression level in glioblastoma immune microenvironment via machine learning cascade-based Raman histopathology

组织病理学 胶质瘤 免疫疗法 肿瘤微环境 组织微阵列 病理 癌症研究 医学 免疫组织化学 免疫系统 计算机科学 免疫学
作者
Qing-Qing Zhou,Jingxing Guo,Ziyang Wang,Jianrui Li,Chen Meng,Qiang Xu,Li-jun Zhu,Qing-Qing Zhou,Qiang Wang,Hao Pan,Jing Pan,Yong Zhu,Minju Song,Xiaoxue Liu,Jiandong Wang,Zhiqiang Zhang,Long Jiang Zhang,Yiqing Wang,Huiming Cai,Xiaohong Chen,Guangming Lu
出处
期刊:Journal of Advanced Research [Elsevier]
被引量:1
标识
DOI:10.1016/j.jare.2023.12.002
摘要

Combination immunotherapy holds promise for improving survival in responsive glioblastoma (GBM) patients. Programmed death-ligand 1 (PD-L1) expression in immune microenvironment (IME) is the most important predictive biomarker for immunotherapy. Due to the heterogeneous distribution of PD-L1, post-operative histopathology fails to accurately capture its expression in residual tumors, making intra-operative diagnosis crucial for GBM treatment strategies. However, the current methods for evaluating the expression of PD-L1 are still time-consuming. To overcome the PD-L1 heterogeneity and enable rapid, accurate, and label-free imaging of PD-L1 expression level in GBM IME at the tissue level. We proposed a novel intra-operative diagnostic method, Machine Learning Cascade (MLC)-based Raman histopathology, which uses a coordinate localization system (CLS), hierarchical clustering analysis (HCA), support vector machine (SVM), and similarity analysis (SA). This method enables visualization of PD-L1 expression in glioma cells, CD8+ T cells, macrophages, and normal cells in addition to the tumor/normal boundary. The study quantified PD-L1 expression levels using the tumor proportion, combined positive, and cellular composition scores (TPS, CPS, and CCS, respectively) based on Raman data. Furthermore, the association between Raman spectral features and biomolecules was examined biochemically. The entire process from signal collection to visualization could be completed within 30 minutes. In an orthotopic glioma mouse model, the MLC-based Raman histopathology demonstrated a high average accuracy (0.990) for identifying different cells and exhibited strong concordance with multiplex immunofluorescence (84.31%) and traditional pathologists' scoring (R2 ≥ 0.9). Moreover, the peak intensities at 837 and 874 cm-1 showed a positive linear correlation with PD-L1 expression level. This study introduced a new and extendable diagnostic method to achieve rapid and accurate visualization of PD-L1 expression in GBM IMB at the tissular level, leading to great potential in GBM intraoperative diagnosis for guiding surgery and post-operative immunotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ononon发布了新的文献求助10
1秒前
1秒前
liu完成签到,获得积分10
3秒前
LWJ发布了新的文献求助10
4秒前
5秒前
大反应釜完成签到,获得积分10
5秒前
TT发布了新的文献求助10
8秒前
Jenny发布了新的文献求助10
10秒前
10秒前
完美凝竹发布了新的文献求助10
10秒前
我是站长才怪应助细腻沅采纳,获得10
11秒前
JG完成签到 ,获得积分10
11秒前
hhh完成签到,获得积分20
11秒前
科研通AI5应助想瘦的海豹采纳,获得10
12秒前
随性完成签到 ,获得积分10
12秒前
自由的信仰完成签到,获得积分10
13秒前
15秒前
16秒前
16秒前
夏夏发布了新的文献求助10
17秒前
打打应助Hangerli采纳,获得10
19秒前
完美凝竹完成签到,获得积分10
20秒前
zfzf0422发布了新的文献求助10
21秒前
蜘蛛道理完成签到 ,获得积分10
21秒前
冷傲迎梦发布了新的文献求助10
22秒前
852应助MEME采纳,获得10
22秒前
Godzilla发布了新的文献求助10
22秒前
大模型应助咕噜仔采纳,获得10
23秒前
蒋时晏应助pharmstudent采纳,获得30
23秒前
24秒前
忘羡222发布了新的文献求助20
25秒前
魏伯安发布了新的文献求助10
25秒前
26秒前
不爱吃糖完成签到,获得积分10
26秒前
27秒前
balabala发布了新的文献求助10
28秒前
睿123456完成签到,获得积分10
29秒前
此话当真完成签到,获得积分10
30秒前
32秒前
慕青应助wmmm采纳,获得10
33秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824