Rapid visualization of PD-L1 expression level in glioblastoma immune microenvironment via machine learning cascade-based Raman histopathology

组织病理学 胶质瘤 免疫疗法 肿瘤微环境 组织微阵列 病理 癌症研究 医学 免疫组织化学 免疫系统 计算机科学 免疫学
作者
Qing-Qing Zhou,Jingxing Guo,Ziyang Wang,Jianrui Li,Chen Meng,Qiang Xu,Li-jun Zhu,Qing-Qing Zhou,Qiang Wang,Hao Pan,Jing Pan,Yong Zhu,Minju Song,Xiaoxue Liu,Jiandong Wang,Zhiqiang Zhang,Long Jiang Zhang,Yiqing Wang,Huiming Cai,Xiaohong Chen,Guangming Lu
出处
期刊:Journal of Advanced Research [Elsevier]
被引量:1
标识
DOI:10.1016/j.jare.2023.12.002
摘要

Combination immunotherapy holds promise for improving survival in responsive glioblastoma (GBM) patients. Programmed death-ligand 1 (PD-L1) expression in immune microenvironment (IME) is the most important predictive biomarker for immunotherapy. Due to the heterogeneous distribution of PD-L1, post-operative histopathology fails to accurately capture its expression in residual tumors, making intra-operative diagnosis crucial for GBM treatment strategies. However, the current methods for evaluating the expression of PD-L1 are still time-consuming. To overcome the PD-L1 heterogeneity and enable rapid, accurate, and label-free imaging of PD-L1 expression level in GBM IME at the tissue level. We proposed a novel intra-operative diagnostic method, Machine Learning Cascade (MLC)-based Raman histopathology, which uses a coordinate localization system (CLS), hierarchical clustering analysis (HCA), support vector machine (SVM), and similarity analysis (SA). This method enables visualization of PD-L1 expression in glioma cells, CD8+ T cells, macrophages, and normal cells in addition to the tumor/normal boundary. The study quantified PD-L1 expression levels using the tumor proportion, combined positive, and cellular composition scores (TPS, CPS, and CCS, respectively) based on Raman data. Furthermore, the association between Raman spectral features and biomolecules was examined biochemically. The entire process from signal collection to visualization could be completed within 30 minutes. In an orthotopic glioma mouse model, the MLC-based Raman histopathology demonstrated a high average accuracy (0.990) for identifying different cells and exhibited strong concordance with multiplex immunofluorescence (84.31%) and traditional pathologists' scoring (R2 ≥ 0.9). Moreover, the peak intensities at 837 and 874 cm-1 showed a positive linear correlation with PD-L1 expression level. This study introduced a new and extendable diagnostic method to achieve rapid and accurate visualization of PD-L1 expression in GBM IMB at the tissular level, leading to great potential in GBM intraoperative diagnosis for guiding surgery and post-operative immunotherapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助天雨流芳采纳,获得10
刚刚
小灰灰完成签到 ,获得积分10
1秒前
天真的灵完成签到 ,获得积分10
1秒前
lcx完成签到,获得积分10
1秒前
飞天小女警完成签到,获得积分10
1秒前
红红完成签到,获得积分10
1秒前
素和姣姣完成签到,获得积分10
2秒前
灰鸽舞完成签到 ,获得积分10
2秒前
逆袭者完成签到,获得积分10
2秒前
ash应助airvince采纳,获得50
2秒前
2秒前
恶毒的婆婆完成签到,获得积分10
3秒前
iceeer完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
spencer177完成签到,获得积分10
5秒前
5秒前
关心发布了新的文献求助10
5秒前
6秒前
minkeyantong完成签到 ,获得积分10
6秒前
gyq发布了新的文献求助10
6秒前
藜誌完成签到,获得积分10
6秒前
BDH完成签到,获得积分10
6秒前
进击的PhD给未来EBM的求助进行了留言
6秒前
6秒前
酒巷完成签到,获得积分10
7秒前
7秒前
Richardxuuu发布了新的文献求助10
7秒前
我就是我完成签到,获得积分10
7秒前
魔芋不爽完成签到 ,获得积分10
8秒前
赵Zhao完成签到,获得积分10
8秒前
wenjian完成签到,获得积分10
8秒前
Linzi完成签到,获得积分10
9秒前
chen完成签到,获得积分10
9秒前
小陈完成签到,获得积分10
9秒前
明钟达完成签到,获得积分10
10秒前
10秒前
N维完成签到,获得积分10
10秒前
10秒前
allover完成签到,获得积分10
11秒前
海绵宝宝发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645277
求助须知:如何正确求助?哪些是违规求助? 4768340
关于积分的说明 15027650
捐赠科研通 4803859
什么是DOI,文献DOI怎么找? 2568523
邀请新用户注册赠送积分活动 1525813
关于科研通互助平台的介绍 1485484