Machine Learning-Based Rapid Epicentral Distance Estimation from a Single Station

震中 支持向量机 地质学 估计 机器学习 人工智能 均方误差 极限学习机 算法 地震学 计算机科学 人工神经网络 统计 数学 经济 管理
作者
Jingbao Zhu,Wentao Sun,Xueying Zhou,Kunpeng Yao,Shanyou Li,Jindong Song
出处
期刊:Bulletin of the Seismological Society of America [Seismological Society of America]
卷期号:114 (3): 1507-1522 被引量:4
标识
DOI:10.1785/0120230267
摘要

Abstract Rapid epicentral distance estimation is of great significance for earthquake early warning (EEW). To rapidly and reliably predict epicentral distance, we developed machine learning models with multiple feature inputs for epicentral distance estimation using a single station and explored the feasibility of three machine learning methods, namely, Random Forest, eXtreme Gradient Boosting, and Support Vector Machine, for epicentral distance estimation. We used strong-motion data recorded by the Japanese Kyoshin network within a range of 1° (∼112 km) from the epicenter to train machine learning models. We used 30 features extracted from the P-wave signal as inputs to the machine learning models and the epicentral distance as the prediction target of the models. For the same test data set, within 0.1–5 s after the P-wave arrival, the epicentral distance estimation results of these three machine learning models were similar. Furthermore, these three machine learning methods can obtain smaller mean absolute errors and root mean square errors, as well as larger coefficients of determination (R2), for epicentral distance estimation than traditional EEW epicentral distance estimation methods, indicating that these three machine learning models can effectively improve the accuracy of epicentral distance estimation to a certain extent. In addition, we analyzed the importance of different features as inputs to machine learning models using SHapley additive exPlanations. We found that using the top 15 important features as inputs, these three machine learning models can also achieve good results for epicentral distance estimation. Based on our results, we inferred that the machine learning models for estimating epicentral distance proposed in this study are meaningful in EEW.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助天空没有极限采纳,获得10
1秒前
蛮蛮发布了新的文献求助10
2秒前
科研通AI5应助岳梦林采纳,获得10
2秒前
研友_VZG7GZ应助JIASHOUSHOU采纳,获得10
5秒前
sun发布了新的文献求助50
5秒前
科研通AI2S应助科研小白采纳,获得10
6秒前
Akim应助aaa采纳,获得10
10秒前
11秒前
12秒前
吧嗒关注了科研通微信公众号
12秒前
炙热盼兰完成签到,获得积分10
14秒前
14秒前
驴橘子窈发布了新的文献求助30
15秒前
wh发布了新的文献求助10
17秒前
姜菡发布了新的文献求助10
18秒前
biubiubiu完成签到 ,获得积分10
20秒前
天天快乐应助灵巧斌采纳,获得20
21秒前
yoyocici1505完成签到,获得积分10
21秒前
21秒前
思源应助luchang123qq采纳,获得10
21秒前
ZZQ完成签到,获得积分10
22秒前
健康豆芽菜完成签到 ,获得积分10
22秒前
善学以致用应助Ye采纳,获得10
26秒前
pluto应助Youtenter采纳,获得20
26秒前
研友_Lmb15n完成签到,获得积分10
27秒前
蛮蛮完成签到 ,获得积分10
28秒前
lita发布了新的文献求助10
28秒前
斯文败类应助郭郭郭采纳,获得10
30秒前
30秒前
30秒前
ZQ完成签到,获得积分10
31秒前
可知蝶恋花完成签到,获得积分20
32秒前
111完成签到,获得积分10
33秒前
辞清完成签到 ,获得积分10
34秒前
吧嗒发布了新的文献求助10
34秒前
烟花应助FEATORE采纳,获得10
34秒前
luchang123qq发布了新的文献求助10
35秒前
36秒前
余味应助young采纳,获得10
36秒前
星辰大海应助安雯采纳,获得10
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781766
求助须知:如何正确求助?哪些是违规求助? 3327359
关于积分的说明 10230587
捐赠科研通 3042204
什么是DOI,文献DOI怎么找? 1669890
邀请新用户注册赠送积分活动 799391
科研通“疑难数据库(出版商)”最低求助积分说明 758792