Assessing the performance of group‐based trajectory modeling method to discover different patterns of medication adherence

协变量 非参数统计 差异(会计) 统计 弹道 计算机科学 医学 重复措施设计 药物依从性 质量(理念) 随机效应模型 数学 计量经济学 内科学 荟萃分析 物理 天文 哲学 会计 认识论 业务
作者
Awa Diop,Alind Gupta,Sebastian Mueller,Louis Dron,Ofir Harari,Heather Berringer,Vinusha Kalatharan,Jay Park,Miceline Mésidor,Denis Talbot
出处
期刊:Pharmaceutical Statistics [Wiley]
标识
DOI:10.1002/pst.2365
摘要

Abstract It is well known that medication adherence is critical to patient outcomes and can decrease patient mortality. The Pharmacy Quality Alliance (PQA) has recognized and identified medication adherence as an important indicator of medication‐use quality. Hence, there is a need to use the right methods to assess medication adherence. The PQA has endorsed the proportion of days covered (PDC) as the primary method of measuring adherence. Although easy to calculate, the PDC has however several drawbacks as a method of measuring adherence. PDC is a deterministic approach that cannot capture the complexity of a dynamic phenomenon. Group‐based trajectory modeling (GBTM) is increasingly proposed as an alternative to capture heterogeneity in medication adherence. The main goal of this paper is to demonstrate, through a simulation study, the ability of GBTM to capture treatment adherence when compared to its deterministic PDC analogue and to the nonparametric longitudinal K‐means. A time‐varying treatment was generated as a quadratic function of time, baseline, and time‐varying covariates. Three trajectory models are considered combining a cat's cradle effect, and a rainbow effect. The performance of GBTM was compared to the PDC and longitudinal K‐means using the absolute bias, the variance, the c‐statistics, the relative bias, and the relative variance. For all explored scenarios, we find that GBTM performed better in capturing different patterns of medication adherence with lower relative bias and variance even under model misspecification than PDC and longitudinal K‐means.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助FENGHUI采纳,获得30
刚刚
刚刚
丘比特应助拾光采纳,获得10
刚刚
认真柠檬完成签到,获得积分10
刚刚
nzz发布了新的文献求助10
1秒前
十一完成签到,获得积分10
1秒前
Wxxxxx发布了新的文献求助10
1秒前
1秒前
老孟完成签到,获得积分10
2秒前
2秒前
weijiechi完成签到,获得积分10
2秒前
余如龙完成签到,获得积分10
2秒前
阿宅完成签到,获得积分10
3秒前
俊逸友蕊发布了新的文献求助10
3秒前
3秒前
Pepsi发布了新的文献求助10
3秒前
小小月完成签到 ,获得积分10
4秒前
4秒前
安和大桥完成签到,获得积分20
5秒前
Bing完成签到,获得积分10
5秒前
一行发布了新的文献求助20
5秒前
5秒前
白开水完成签到,获得积分10
5秒前
5秒前
哦哦哦完成签到,获得积分10
6秒前
呵呵贺哈完成签到 ,获得积分10
6秒前
dou完成签到,获得积分10
6秒前
单薄冰安完成签到,获得积分10
6秒前
bylee发布了新的文献求助10
6秒前
疯狂的寻绿完成签到,获得积分10
6秒前
7秒前
lily完成签到,获得积分10
7秒前
丫丫发布了新的文献求助10
8秒前
刻苦的淇完成签到 ,获得积分10
8秒前
zxdw完成签到,获得积分10
8秒前
有鱼完成签到,获得积分10
9秒前
熊熊熊完成签到,获得积分10
9秒前
精忠报国完成签到,获得积分10
9秒前
科研通AI6应助孙久惠jiuh采纳,获得10
10秒前
gypsophila发布了新的文献求助30
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568540
求助须知:如何正确求助?哪些是违规求助? 4653148
关于积分的说明 14704472
捐赠科研通 4594943
什么是DOI,文献DOI怎么找? 2521424
邀请新用户注册赠送积分活动 1493006
关于科研通互助平台的介绍 1463793