Assessing the performance of group‐based trajectory modeling method to discover different patterns of medication adherence

协变量 非参数统计 差异(会计) 统计 弹道 计算机科学 医学 重复措施设计 药物依从性 质量(理念) 随机效应模型 数学 计量经济学 内科学 荟萃分析 物理 天文 哲学 会计 认识论 业务
作者
Awa Diop,Alind Gupta,Sebastian Mueller,Louis Dron,Ofir Harari,Heather Berringer,Vinusha Kalatharan,Jay Park,Miceline Mésidor,Denis Talbot
出处
期刊:Pharmaceutical Statistics [Wiley]
标识
DOI:10.1002/pst.2365
摘要

Abstract It is well known that medication adherence is critical to patient outcomes and can decrease patient mortality. The Pharmacy Quality Alliance (PQA) has recognized and identified medication adherence as an important indicator of medication‐use quality. Hence, there is a need to use the right methods to assess medication adherence. The PQA has endorsed the proportion of days covered (PDC) as the primary method of measuring adherence. Although easy to calculate, the PDC has however several drawbacks as a method of measuring adherence. PDC is a deterministic approach that cannot capture the complexity of a dynamic phenomenon. Group‐based trajectory modeling (GBTM) is increasingly proposed as an alternative to capture heterogeneity in medication adherence. The main goal of this paper is to demonstrate, through a simulation study, the ability of GBTM to capture treatment adherence when compared to its deterministic PDC analogue and to the nonparametric longitudinal K‐means. A time‐varying treatment was generated as a quadratic function of time, baseline, and time‐varying covariates. Three trajectory models are considered combining a cat's cradle effect, and a rainbow effect. The performance of GBTM was compared to the PDC and longitudinal K‐means using the absolute bias, the variance, the c‐statistics, the relative bias, and the relative variance. For all explored scenarios, we find that GBTM performed better in capturing different patterns of medication adherence with lower relative bias and variance even under model misspecification than PDC and longitudinal K‐means.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ybdx给ybdx的求助进行了留言
刚刚
刚刚
刚刚
斯文败类应助ws采纳,获得10
1秒前
qian03完成签到,获得积分10
1秒前
lijg71完成签到,获得积分10
1秒前
1秒前
天空的天发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
Lucas应助Reine采纳,获得10
3秒前
4秒前
4秒前
wanci应助嗷唔一口吃掉采纳,获得10
4秒前
Ccry发布了新的文献求助10
4秒前
威武的铭完成签到,获得积分10
4秒前
EeeYiz发布了新的文献求助10
4秒前
4秒前
5秒前
虚幻中蓝发布了新的文献求助10
5秒前
NexusExplorer应助愉快秀采纳,获得10
5秒前
5秒前
笑相发布了新的文献求助10
6秒前
Potato发布了新的文献求助10
6秒前
LAOA发布了新的文献求助10
6秒前
乐乐应助郝出站采纳,获得10
6秒前
6秒前
刻苦的煎蛋完成签到,获得积分10
6秒前
派大星完成签到,获得积分20
7秒前
情怀应助ccz采纳,获得10
7秒前
7秒前
8秒前
英俊的铭应助洋洋采纳,获得10
8秒前
念烟完成签到,获得积分10
8秒前
孙伟健发布了新的文献求助10
9秒前
QY发布了新的文献求助10
9秒前
奈落发布了新的文献求助10
9秒前
乐乐应助忧虑的孤萍采纳,获得10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661078
求助须知:如何正确求助?哪些是违规求助? 4836965
关于积分的说明 15093547
捐赠科研通 4819770
什么是DOI,文献DOI怎么找? 2579579
邀请新用户注册赠送积分活动 1533880
关于科研通互助平台的介绍 1492628