Assessing the performance of group‐based trajectory modeling method to discover different patterns of medication adherence

协变量 非参数统计 差异(会计) 统计 弹道 计算机科学 医学 重复措施设计 药物依从性 质量(理念) 随机效应模型 数学 计量经济学 内科学 荟萃分析 物理 天文 哲学 会计 认识论 业务
作者
Awa Diop,Alind Gupta,Sebastian Mueller,Louis Dron,Ofir Harari,Heather Berringer,Vinusha Kalatharan,Jay Park,Miceline Mésidor,Denis Talbot
出处
期刊:Pharmaceutical Statistics [Wiley]
标识
DOI:10.1002/pst.2365
摘要

Abstract It is well known that medication adherence is critical to patient outcomes and can decrease patient mortality. The Pharmacy Quality Alliance (PQA) has recognized and identified medication adherence as an important indicator of medication‐use quality. Hence, there is a need to use the right methods to assess medication adherence. The PQA has endorsed the proportion of days covered (PDC) as the primary method of measuring adherence. Although easy to calculate, the PDC has however several drawbacks as a method of measuring adherence. PDC is a deterministic approach that cannot capture the complexity of a dynamic phenomenon. Group‐based trajectory modeling (GBTM) is increasingly proposed as an alternative to capture heterogeneity in medication adherence. The main goal of this paper is to demonstrate, through a simulation study, the ability of GBTM to capture treatment adherence when compared to its deterministic PDC analogue and to the nonparametric longitudinal K‐means. A time‐varying treatment was generated as a quadratic function of time, baseline, and time‐varying covariates. Three trajectory models are considered combining a cat's cradle effect, and a rainbow effect. The performance of GBTM was compared to the PDC and longitudinal K‐means using the absolute bias, the variance, the c‐statistics, the relative bias, and the relative variance. For all explored scenarios, we find that GBTM performed better in capturing different patterns of medication adherence with lower relative bias and variance even under model misspecification than PDC and longitudinal K‐means.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
FashionBoy应助笨笨以莲采纳,获得10
1秒前
wan完成签到,获得积分10
1秒前
Akim应助元谷雪采纳,获得10
1秒前
最好发布了新的文献求助10
2秒前
顾矜应助a.........采纳,获得10
2秒前
朴素黑猫发布了新的文献求助10
3秒前
易中华完成签到,获得积分10
3秒前
李冬卿完成签到,获得积分10
3秒前
4秒前
4秒前
Hello应助wan采纳,获得10
4秒前
瑾蘆完成签到 ,获得积分10
5秒前
大力帽子应助CHEN采纳,获得10
5秒前
qiii发布了新的文献求助10
5秒前
大个应助smz采纳,获得10
5秒前
sbf发布了新的文献求助10
6秒前
卓卓卓卓关注了科研通微信公众号
6秒前
芝士椰果发布了新的文献求助30
7秒前
wrlwrl完成签到,获得积分10
7秒前
Fermion发布了新的文献求助10
7秒前
hearz完成签到,获得积分10
8秒前
小马甲应助小糊涂采纳,获得10
8秒前
feng完成签到 ,获得积分10
8秒前
霍笑白完成签到,获得积分10
8秒前
衡珩蘅完成签到,获得积分20
9秒前
11秒前
FashionBoy应助sbf采纳,获得10
11秒前
完美世界应助evelyn采纳,获得10
11秒前
鱼鱼色发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
搜集达人应助HH采纳,获得10
12秒前
13秒前
搜集达人应助lmr采纳,获得10
13秒前
完美世界应助罗柠七采纳,获得20
14秒前
阿强完成签到,获得积分10
14秒前
衡珩蘅发布了新的文献求助30
15秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233