Research on the factors influencing nanofiltration membrane fouling and the prediction of membrane fouling

纳滤 结垢 膜污染 化学 膜技术 生化工程 环境科学 计算机科学 工艺工程 环境工程 工程类 生物化学
作者
Wenjing Zheng,Yan Chen,Xiaohu Xu,Peng Xing,Yalin Niu,Pengcheng Xu,Tian Li
出处
期刊:Journal of water process engineering [Elsevier]
卷期号:59: 104876-104876 被引量:12
标识
DOI:10.1016/j.jwpe.2024.104876
摘要

The issue of membrane fouling poses a significant challenge to the extensive adoption of nanofiltration membrane technology in public water supply systems. The occurrence of bottlenecks is a common issue in the implementation of nanofiltration production. The mitigation of fouling in nanofiltration membranes has emerged as a significant research focus within the water treatment field. Numerous scholars have dedicated their efforts to researching the mechanisms of membrane fouling and constructing intricate mathematical and physical models to explain the relevant mechanisms. The goal of these endeavors is to achieve long-term stability and high throughput operation of nanofiltration processes. However, traditional mathematical models rely on simplifying assumptions and are less likely to capture the dynamics of membrane contamination in practical applications. Machine learning is rapidly emerging as a novel approach for predicting membrane fouling, owing to the rapid progress in artificial intelligence. Machine learning can autonomously learn from historical data, fully harness the value of data, and comprehend the inherent correlation between membrane pollution and various influencing factors. This makes it possible to predict trends in pollution and even facilitates autonomous decision-making, automatic adjustment, and optimization of membrane process flow. Ultimately, it helps create an intelligent water ecosystem. The present study incorporates both local and international research to examine the key factors that contribute to nanofiltration membrane fouling. This review focuses on the influence of raw water quality parameters, membrane material characteristics, and operating conditions. Additionally, this paper presents a comprehensive analysis of the application of machine learning techniques in predicting nanofiltration membrane fouling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牛肉面完成签到 ,获得积分10
1秒前
kyt完成签到,获得积分10
2秒前
2秒前
科研通AI2S应助zzt37927采纳,获得10
3秒前
5秒前
6秒前
Gao完成签到,获得积分20
7秒前
8秒前
慕青应助nyc采纳,获得30
8秒前
9秒前
Gao发布了新的文献求助10
9秒前
OKay呀完成签到 ,获得积分10
10秒前
ksduoiwex发布了新的文献求助10
10秒前
NexusExplorer应助哈哈哈采纳,获得10
11秒前
Estrella完成签到,获得积分10
11秒前
快哒哒哒发布了新的文献求助10
12秒前
瞬间完成签到 ,获得积分10
16秒前
zhangling发布了新的文献求助10
16秒前
16秒前
leilei发布了新的文献求助10
17秒前
18秒前
苦我心智完成签到,获得积分10
19秒前
21秒前
行止发布了新的文献求助10
22秒前
nyc发布了新的文献求助30
22秒前
陈预立完成签到,获得积分10
23秒前
852应助斯文问旋采纳,获得10
24秒前
结实的啤酒完成签到 ,获得积分10
26秒前
ff发布了新的文献求助10
26秒前
细心孤丹发布了新的文献求助10
26秒前
vn发布了新的文献求助10
27秒前
Anarchy发布了新的文献求助10
28秒前
平常秋珊完成签到,获得积分20
28秒前
陈预立发布了新的文献求助10
28秒前
欢呼的棒棒糖完成签到,获得积分10
28秒前
科研通AI2S应助行止采纳,获得10
30秒前
嘟嘟完成签到,获得积分10
30秒前
赵书杰完成签到,获得积分10
32秒前
脑洞疼应助ibigbird采纳,获得10
34秒前
34秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164260
求助须知:如何正确求助?哪些是违规求助? 2815000
关于积分的说明 7907415
捐赠科研通 2474608
什么是DOI,文献DOI怎么找? 1317598
科研通“疑难数据库(出版商)”最低求助积分说明 631857
版权声明 602228