A robustness division based multi-population evolutionary algorithm for solving vehicle routing problems with uncertain demand

计算机科学 稳健性(进化) 师(数学) 车辆路径问题 进化算法 数学优化 人口 布线(电子设计自动化) 算法 人工智能 计算机网络 生物化学 化学 算术 数学 人口学 社会学 基因
作者
Hao Jiang,Yanhui Tong,Bowen Song,Chao Wang,Jiahang Li,Qi Liu,Xingyi Zhang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108004-108004 被引量:1
标识
DOI:10.1016/j.engappai.2024.108004
摘要

The vehicle routing problem with uncertain demand (VRPUD) is an extension of capacitated vehicle routing problem (CVRP), where the demand of each customer is unknown when dispatching the vehicles to service customers. Since it is more practical than CVRP, the VRPUD has aroused wide attention. Although the evolutionary algorithms (EAs) have demonstrate its promising performance on solving VRPUD, the most of EAs only consider the robustness of solution after generating offspring, which limit the quality of solutions found by EAs. To this end, in this paper, a robustness division based multi-population evolutionary algorithm (RDMPEA) is developed for VRPUDs, where the robustness is considered before, during and after offspring. Specifically, before generating offspring, the RDMPEA first divides the individuals into different subpopulations according to their robustness level, and only the individuals within the same subpopulation can match each other and generate offspring. During generating offspring, the RDMPEA employs a route based crossover operator to generate offspring, where the routes with higher robustness have a greater probability of being inherited by the offspring. After generating offspring, a dedicated environment selection strategy is applied to survive the individuals with better robustness and travel cost. In the experiments, the proposed RDMPEA is compared to three state-of-the-art heuristic methods tailored for VRPUDs on a variety of instances obtained by using three widely used vehicle routing problem benchmarks. The experimental results indicate that the proposed RDMPEA is superior to three compared algorithms, and can find solutions with better travel cost and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温柔觅松发布了新的文献求助10
1秒前
1秒前
细心柜子完成签到 ,获得积分10
1秒前
3秒前
3秒前
4秒前
zheng完成签到,获得积分10
4秒前
jagger发布了新的文献求助10
4秒前
xiaopeng完成签到,获得积分10
5秒前
kirito1211完成签到,获得积分10
6秒前
大个应助真诚采纳,获得10
6秒前
6秒前
小明应助发财达人采纳,获得10
6秒前
情怀应助无心的芸采纳,获得10
7秒前
库梵发布了新的文献求助10
7秒前
8秒前
CodeCraft应助小脸红扑扑采纳,获得10
8秒前
缓慢采柳完成签到,获得积分10
8秒前
最初的远方完成签到,获得积分10
9秒前
许亦发布了新的文献求助10
9秒前
11秒前
着急的cc完成签到,获得积分10
11秒前
淡然岂愈完成签到,获得积分20
12秒前
摩奥锚完成签到 ,获得积分10
14秒前
芝士发布了新的文献求助10
14秒前
15秒前
缓慢荔枝发布了新的文献求助10
16秒前
electricelectric应助蛙蛙大王采纳,获得30
16秒前
17秒前
无奈的迎丝完成签到,获得积分10
17秒前
17秒前
所所应助欢喜的绿竹采纳,获得10
18秒前
章宇程发布了新的文献求助10
18秒前
完美世界应助啦啦采纳,获得10
19秒前
搜集达人应助何雨航采纳,获得10
19秒前
19秒前
ztm147关注了科研通微信公众号
20秒前
老福贵儿应助温柔觅松采纳,获得10
20秒前
20秒前
赘婿应助拼搏半梦采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299901
求助须知:如何正确求助?哪些是违规求助? 4447967
关于积分的说明 13844251
捐赠科研通 4333585
什么是DOI,文献DOI怎么找? 2378948
邀请新用户注册赠送积分活动 1374119
关于科研通互助平台的介绍 1339733