亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A robustness division based multi-population evolutionary algorithm for solving vehicle routing problems with uncertain demand

计算机科学 稳健性(进化) 师(数学) 车辆路径问题 进化算法 数学优化 人口 布线(电子设计自动化) 算法 人工智能 计算机网络 生物化学 化学 算术 数学 人口学 社会学 基因
作者
Hao Jiang,Yanhui Tong,Bowen Song,Chao Wang,Jiahang Li,Qi Liu,Xingyi Zhang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108004-108004 被引量:1
标识
DOI:10.1016/j.engappai.2024.108004
摘要

The vehicle routing problem with uncertain demand (VRPUD) is an extension of capacitated vehicle routing problem (CVRP), where the demand of each customer is unknown when dispatching the vehicles to service customers. Since it is more practical than CVRP, the VRPUD has aroused wide attention. Although the evolutionary algorithms (EAs) have demonstrate its promising performance on solving VRPUD, the most of EAs only consider the robustness of solution after generating offspring, which limit the quality of solutions found by EAs. To this end, in this paper, a robustness division based multi-population evolutionary algorithm (RDMPEA) is developed for VRPUDs, where the robustness is considered before, during and after offspring. Specifically, before generating offspring, the RDMPEA first divides the individuals into different subpopulations according to their robustness level, and only the individuals within the same subpopulation can match each other and generate offspring. During generating offspring, the RDMPEA employs a route based crossover operator to generate offspring, where the routes with higher robustness have a greater probability of being inherited by the offspring. After generating offspring, a dedicated environment selection strategy is applied to survive the individuals with better robustness and travel cost. In the experiments, the proposed RDMPEA is compared to three state-of-the-art heuristic methods tailored for VRPUDs on a variety of instances obtained by using three widely used vehicle routing problem benchmarks. The experimental results indicate that the proposed RDMPEA is superior to three compared algorithms, and can find solutions with better travel cost and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
sunstar完成签到,获得积分10
11秒前
11秒前
悲凉的忆南完成签到,获得积分10
15秒前
yxl完成签到,获得积分10
18秒前
钟哈哈完成签到,获得积分10
22秒前
可耐的盈完成签到,获得积分10
25秒前
绿毛水怪完成签到,获得积分10
28秒前
lsc完成签到,获得积分10
32秒前
35秒前
小fei完成签到,获得积分10
35秒前
麻辣薯条完成签到,获得积分10
39秒前
42秒前
时尚身影完成签到,获得积分10
42秒前
流苏完成签到,获得积分10
46秒前
研友_ZAxxjn发布了新的文献求助20
46秒前
流苏2完成签到,获得积分10
49秒前
科研通AI2S应助科研通管家采纳,获得10
50秒前
wangjun完成签到,获得积分10
51秒前
56秒前
Aroojshams完成签到,获得积分10
57秒前
友好的巧凡完成签到,获得积分10
1分钟前
刘瑞吉完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
WANWAN发布了新的文献求助10
1分钟前
小情绪完成签到 ,获得积分10
1分钟前
土壤情缘发布了新的文献求助10
1分钟前
Jason完成签到 ,获得积分10
1分钟前
WANWAN完成签到,获得积分20
1分钟前
土壤情缘完成签到,获得积分10
1分钟前
1分钟前
阿芜完成签到,获得积分10
1分钟前
榴莲牛奶瓶应助阿芜采纳,获得10
1分钟前
科研通AI6应助yzzzz采纳,获得10
1分钟前
小丸子和zz完成签到 ,获得积分10
1分钟前
Amelia完成签到 ,获得积分10
1分钟前
1分钟前
莫听南发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418313
求助须知:如何正确求助?哪些是违规求助? 4534003
关于积分的说明 14142967
捐赠科研通 4450296
什么是DOI,文献DOI怎么找? 2441153
邀请新用户注册赠送积分活动 1432891
关于科研通互助平台的介绍 1410244