A robustness division based multi-population evolutionary algorithm for solving vehicle routing problems with uncertain demand

计算机科学 稳健性(进化) 师(数学) 车辆路径问题 进化算法 数学优化 人口 布线(电子设计自动化) 算法 人工智能 计算机网络 生物化学 化学 算术 数学 人口学 社会学 基因
作者
Hao Jiang,Yanhui Tong,Bowen Song,Chao Wang,Jiahang Li,Qi Liu,Xingyi Zhang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 108004-108004 被引量:1
标识
DOI:10.1016/j.engappai.2024.108004
摘要

The vehicle routing problem with uncertain demand (VRPUD) is an extension of capacitated vehicle routing problem (CVRP), where the demand of each customer is unknown when dispatching the vehicles to service customers. Since it is more practical than CVRP, the VRPUD has aroused wide attention. Although the evolutionary algorithms (EAs) have demonstrate its promising performance on solving VRPUD, the most of EAs only consider the robustness of solution after generating offspring, which limit the quality of solutions found by EAs. To this end, in this paper, a robustness division based multi-population evolutionary algorithm (RDMPEA) is developed for VRPUDs, where the robustness is considered before, during and after offspring. Specifically, before generating offspring, the RDMPEA first divides the individuals into different subpopulations according to their robustness level, and only the individuals within the same subpopulation can match each other and generate offspring. During generating offspring, the RDMPEA employs a route based crossover operator to generate offspring, where the routes with higher robustness have a greater probability of being inherited by the offspring. After generating offspring, a dedicated environment selection strategy is applied to survive the individuals with better robustness and travel cost. In the experiments, the proposed RDMPEA is compared to three state-of-the-art heuristic methods tailored for VRPUDs on a variety of instances obtained by using three widely used vehicle routing problem benchmarks. The experimental results indicate that the proposed RDMPEA is superior to three compared algorithms, and can find solutions with better travel cost and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助MZX采纳,获得10
1秒前
morena发布了新的文献求助10
1秒前
2秒前
666发布了新的文献求助10
2秒前
2秒前
跳跃芹发布了新的文献求助10
3秒前
ddddu完成签到,获得积分10
3秒前
Jae完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助100
3秒前
May发布了新的文献求助10
4秒前
情怀应助白衣少年采纳,获得10
4秒前
wbb完成签到,获得积分20
5秒前
5秒前
5秒前
5秒前
小蘑菇应助坦率的如萱采纳,获得10
5秒前
沉默诗柳发布了新的文献求助10
6秒前
Sirius发布了新的文献求助10
7秒前
8秒前
Jasper应助隐形之玉采纳,获得10
8秒前
Eraser完成签到,获得积分10
8秒前
wbb发布了新的文献求助10
9秒前
李健的小迷弟应助甜崽采纳,获得30
10秒前
10秒前
Owen应助Forty采纳,获得10
11秒前
11秒前
传奇3应助流萤采纳,获得10
12秒前
林lin发布了新的文献求助10
12秒前
潇洒路灯完成签到 ,获得积分10
13秒前
mypang发布了新的文献求助10
13秒前
14秒前
科研通AI5应助逍遥呱呱采纳,获得10
15秒前
不想晚睡完成签到,获得积分10
16秒前
哈哈姐发布了新的文献求助10
16秒前
田様应助Gui桂采纳,获得10
16秒前
orixero应助跳跃芹采纳,获得10
17秒前
量子星尘发布了新的文献求助100
17秒前
17秒前
丫丫完成签到,获得积分10
21秒前
Yummy完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4898488
求助须知:如何正确求助?哪些是违规求助? 4179203
关于积分的说明 12974320
捐赠科研通 3943096
什么是DOI,文献DOI怎么找? 2163113
邀请新用户注册赠送积分活动 1181566
关于科研通互助平台的介绍 1087123