A robustness division based multi-population evolutionary algorithm for solving vehicle routing problems with uncertain demand

计算机科学 稳健性(进化) 师(数学) 车辆路径问题 进化算法 数学优化 人口 布线(电子设计自动化) 算法 人工智能 计算机网络 基因 社会学 人口学 算术 生物化学 化学 数学
作者
Hao Jiang,Yanhui Tong,Bowen Song,Chao Wang,Jiahang Li,Qi Liu,Xingyi Zhang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108004-108004 被引量:1
标识
DOI:10.1016/j.engappai.2024.108004
摘要

The vehicle routing problem with uncertain demand (VRPUD) is an extension of capacitated vehicle routing problem (CVRP), where the demand of each customer is unknown when dispatching the vehicles to service customers. Since it is more practical than CVRP, the VRPUD has aroused wide attention. Although the evolutionary algorithms (EAs) have demonstrate its promising performance on solving VRPUD, the most of EAs only consider the robustness of solution after generating offspring, which limit the quality of solutions found by EAs. To this end, in this paper, a robustness division based multi-population evolutionary algorithm (RDMPEA) is developed for VRPUDs, where the robustness is considered before, during and after offspring. Specifically, before generating offspring, the RDMPEA first divides the individuals into different subpopulations according to their robustness level, and only the individuals within the same subpopulation can match each other and generate offspring. During generating offspring, the RDMPEA employs a route based crossover operator to generate offspring, where the routes with higher robustness have a greater probability of being inherited by the offspring. After generating offspring, a dedicated environment selection strategy is applied to survive the individuals with better robustness and travel cost. In the experiments, the proposed RDMPEA is compared to three state-of-the-art heuristic methods tailored for VRPUDs on a variety of instances obtained by using three widely used vehicle routing problem benchmarks. The experimental results indicate that the proposed RDMPEA is superior to three compared algorithms, and can find solutions with better travel cost and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喜悦寒凝发布了新的文献求助20
4秒前
王不评完成签到 ,获得积分10
4秒前
4秒前
栖木木完成签到 ,获得积分10
6秒前
ZhihaoZhu完成签到 ,获得积分10
6秒前
肉片牛帅帅完成签到,获得积分10
16秒前
自信的高山完成签到,获得积分10
16秒前
看文献完成签到,获得积分10
19秒前
凌代萱完成签到 ,获得积分10
28秒前
小文cremen完成签到 ,获得积分10
39秒前
LJJ完成签到 ,获得积分10
45秒前
人类繁殖学完成签到 ,获得积分10
46秒前
hml123完成签到,获得积分10
49秒前
49秒前
ethan2801完成签到,获得积分10
50秒前
50秒前
CWC完成签到,获得积分10
51秒前
dyk完成签到,获得积分10
56秒前
Todou完成签到 ,获得积分10
1分钟前
科研菜鸡完成签到 ,获得积分10
1分钟前
优雅的凝阳完成签到 ,获得积分10
1分钟前
希望天下0贩的0应助zzzkyt采纳,获得10
1分钟前
宁宁完成签到 ,获得积分10
1分钟前
sonicgoboy完成签到,获得积分10
1分钟前
1分钟前
小赵很努力完成签到 ,获得积分10
1分钟前
zzzkyt发布了新的文献求助10
1分钟前
乌云乌云快走开完成签到,获得积分10
1分钟前
yoyo完成签到,获得积分10
1分钟前
njseu完成签到 ,获得积分10
1分钟前
jeffrey完成签到,获得积分10
1分钟前
czz014完成签到,获得积分10
1分钟前
hj0806完成签到,获得积分0
1分钟前
深情安青应助依依采纳,获得10
1分钟前
youngyang完成签到 ,获得积分10
1分钟前
sjsuA完成签到,获得积分10
1分钟前
JevonCheung完成签到 ,获得积分10
1分钟前
苏钰完成签到,获得积分10
1分钟前
Joseph_LIN完成签到,获得积分10
2分钟前
顺利白竹完成签到 ,获得积分10
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
RNAの科学 ―時代を拓く生体分子― 金井 昭夫(編) 1000
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3353594
求助须知:如何正确求助?哪些是违规求助? 2978155
关于积分的说明 8684090
捐赠科研通 2659642
什么是DOI,文献DOI怎么找? 1456291
科研通“疑难数据库(出版商)”最低求助积分说明 674327
邀请新用户注册赠送积分活动 665070