已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A robustness division based multi-population evolutionary algorithm for solving vehicle routing problems with uncertain demand

计算机科学 稳健性(进化) 师(数学) 车辆路径问题 进化算法 数学优化 人口 布线(电子设计自动化) 算法 人工智能 计算机网络 生物化学 化学 算术 数学 人口学 社会学 基因
作者
Hao Jiang,Yanhui Tong,Bowen Song,Chao Wang,Jiahang Li,Qi Liu,Xingyi Zhang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108004-108004 被引量:1
标识
DOI:10.1016/j.engappai.2024.108004
摘要

The vehicle routing problem with uncertain demand (VRPUD) is an extension of capacitated vehicle routing problem (CVRP), where the demand of each customer is unknown when dispatching the vehicles to service customers. Since it is more practical than CVRP, the VRPUD has aroused wide attention. Although the evolutionary algorithms (EAs) have demonstrate its promising performance on solving VRPUD, the most of EAs only consider the robustness of solution after generating offspring, which limit the quality of solutions found by EAs. To this end, in this paper, a robustness division based multi-population evolutionary algorithm (RDMPEA) is developed for VRPUDs, where the robustness is considered before, during and after offspring. Specifically, before generating offspring, the RDMPEA first divides the individuals into different subpopulations according to their robustness level, and only the individuals within the same subpopulation can match each other and generate offspring. During generating offspring, the RDMPEA employs a route based crossover operator to generate offspring, where the routes with higher robustness have a greater probability of being inherited by the offspring. After generating offspring, a dedicated environment selection strategy is applied to survive the individuals with better robustness and travel cost. In the experiments, the proposed RDMPEA is compared to three state-of-the-art heuristic methods tailored for VRPUDs on a variety of instances obtained by using three widely used vehicle routing problem benchmarks. The experimental results indicate that the proposed RDMPEA is superior to three compared algorithms, and can find solutions with better travel cost and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哇塞完成签到 ,获得积分10
1秒前
2秒前
妘婴完成签到,获得积分10
4秒前
4秒前
4秒前
暗月完成签到,获得积分10
5秒前
贾贾完成签到 ,获得积分10
6秒前
城。完成签到,获得积分10
7秒前
yohana完成签到 ,获得积分10
8秒前
8秒前
十一完成签到 ,获得积分10
9秒前
高晗发布了新的文献求助10
9秒前
zz发布了新的文献求助10
9秒前
刘壮实发布了新的文献求助10
9秒前
meow完成签到 ,获得积分10
10秒前
李明完成签到 ,获得积分10
11秒前
龙骑士25完成签到 ,获得积分10
11秒前
cc完成签到,获得积分10
12秒前
13秒前
14秒前
缓慢弼发布了新的文献求助10
15秒前
伊戈达拉一个大拉完成签到 ,获得积分10
15秒前
m李完成签到 ,获得积分10
16秒前
浮游应助7754采纳,获得10
16秒前
潇潇鱼发布了新的文献求助10
20秒前
冬日暖阳完成签到,获得积分10
22秒前
23秒前
大羊完成签到 ,获得积分10
24秒前
科研大咖杨某完成签到 ,获得积分10
24秒前
侯锐淇完成签到 ,获得积分10
25秒前
26秒前
罗皮特完成签到 ,获得积分10
27秒前
凉城予梦完成签到,获得积分10
28秒前
28秒前
青柠味薯片完成签到,获得积分10
29秒前
大鼻子的新四岁完成签到,获得积分10
30秒前
weed6发布了新的文献求助10
30秒前
俺是小兰仔完成签到 ,获得积分10
31秒前
31秒前
崔洪瑞完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401142
求助须知:如何正确求助?哪些是违规求助? 4520145
关于积分的说明 14078789
捐赠科研通 4433229
什么是DOI,文献DOI怎么找? 2434030
邀请新用户注册赠送积分活动 1426180
关于科研通互助平台的介绍 1404792