已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automated Machine Learning for Predicting Diabetic Retinopathy Progression From Ultra-Widefield Retinal Images

医学 糖尿病性视网膜病变 眼科 视网膜 人工智能 人口 糖尿病 计算机科学 内分泌学 环境卫生
作者
Paolo S. Silva,Dean Zhang,Cris Martin P. Jacoba,Ward Fickweiler,Drew Lewis,Jeremy Leitmeyer,Katie Curran,Recivall P. Salongcay,Duy Doan,Mohamed Ashraf,Jerry D. Cavallerano,Jennifer K. Sun,Tünde Pető,Lloyd Paul Aiello
出处
期刊:JAMA Ophthalmology [American Medical Association]
卷期号:142 (3): 171-171 被引量:10
标识
DOI:10.1001/jamaophthalmol.2023.6318
摘要

Importance Machine learning (ML) algorithms have the potential to identify eyes with early diabetic retinopathy (DR) at increased risk for disease progression. Objective To create and validate automated ML models (autoML) for DR progression from ultra-widefield (UWF) retinal images. Design, Setting and Participants Deidentified UWF images with mild or moderate nonproliferative DR (NPDR) with 3 years of longitudinal follow-up retinal imaging or evidence of progression within 3 years were used to develop automated ML models for predicting DR progression in UWF images. All images were collected from a tertiary diabetes-specific medical center retinal image dataset. Data were collected from July to September 2022. Exposure Automated ML models were generated from baseline on-axis 200° UWF retinal images. Baseline retinal images were labeled for progression based on centralized reading center evaluation of baseline and follow-up images according to the clinical Early Treatment Diabetic Retinopathy Study severity scale. Images for model development were split 8-1-1 for training, optimization, and testing to detect 1 or more steps of DR progression. Validation was performed using a 328-image set from the same patient population not used in model development. Main Outcomes and Measures Area under the precision-recall curve (AUPRC), sensitivity, specificity, and accuracy. Results A total of 1179 deidentified UWF images with mild (380 [32.2%]) or moderate (799 [67.8%]) NPDR were included. DR progression was present in half of the training set (590 of 1179 [50.0%]). The model’s AUPRC was 0.717 for baseline mild NPDR and 0.863 for moderate NPDR. On the validation set for eyes with mild NPDR, sensitivity was 0.72 (95% CI, 0.57-0.83), specificity was 0.63 (95% CI, 0.57-0.69), prevalence was 0.15 (95% CI, 0.12-0.20), and accuracy was 64.3%; for eyes with moderate NPDR, sensitivity was 0.80 (95% CI, 0.70-0.87), specificity was 0.72 (95% CI, 0.66-0.76), prevalence was 0.22 (95% CI, 0.19-0.27), and accuracy was 73.8%. In the validation set, 6 of 8 eyes (75%) with mild NPDR and 35 of 41 eyes (85%) with moderate NPDR progressed 2 steps or more were identified. All 4 eyes with mild NPDR that progressed within 6 months and 1 year were identified, and 8 of 9 (89%) and 17 of 20 (85%) with moderate NPDR that progressed within 6 months and 1 year, respectively, were identified. Conclusions and Relevance This study demonstrates the accuracy and feasibility of automated ML models for identifying DR progression developed using UWF images, especially for prediction of 2-step or greater DR progression within 1 year. Potentially, the use of ML algorithms may refine the risk of disease progression and identify those at highest short-term risk, thus reducing costs and improving vision-related outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橘子发布了新的文献求助10
刚刚
无花果应助KUKU采纳,获得10
3秒前
充电宝应助klwy采纳,获得10
3秒前
4秒前
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
丘比特应助活泼若烟采纳,获得10
7秒前
7秒前
8秒前
8秒前
wanci应助cc采纳,获得10
8秒前
arthurge发布了新的文献求助10
8秒前
9秒前
9秒前
arthurge发布了新的文献求助10
9秒前
arthurge发布了新的文献求助10
9秒前
arthurge发布了新的文献求助10
9秒前
9秒前
9秒前
FIN应助LXa134采纳,获得20
9秒前
10秒前
Wh关注了科研通微信公众号
10秒前
Lucas应助璐chen采纳,获得10
10秒前
arthurge发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
arthurge发布了新的文献求助10
10秒前
arthurge发布了新的文献求助10
10秒前
arthurge发布了新的文献求助10
11秒前
arthurge发布了新的文献求助10
11秒前
arthurge发布了新的文献求助10
11秒前
arthurge发布了新的文献求助10
11秒前
arthurge发布了新的文献求助10
11秒前
arthurge发布了新的文献求助10
11秒前
11秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491087
求助须知:如何正确求助?哪些是违规求助? 3077779
关于积分的说明 9150236
捐赠科研通 2770180
什么是DOI,文献DOI怎么找? 1520177
邀请新用户注册赠送积分活动 704504
科研通“疑难数据库(出版商)”最低求助积分说明 702196