Toward Balance Deep Semisupervised Clustering

聚类分析 计算机科学 杠杆(统计) 自编码 成对比较 人工智能 编码(集合论) 数据挖掘 机器学习 可扩展性 人工神经网络 集合(抽象数据类型) 数据库 程序设计语言
作者
Yu Duan,Zhoumin Lu,Rong Wang,Xuelong Li,Feiping Nie
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (2): 2816-2828 被引量:6
标识
DOI:10.1109/tnnls.2023.3339680
摘要

The goal of balanced clustering is partitioning data into distinct groups of equal size. Previous studies have attempted to address this problem by designing balanced regularizers or utilizing conventional clustering methods. However, these methods often rely solely on classic methods, which limits their performance and primarily focuses on low-dimensional data. Although neural networks exhibit effective performance on high-dimensional datasets, they struggle to effectively leverage prior knowledge for clustering with a balanced tendency. To overcome the above limitations, we propose deep semisupervised balanced clustering, which simultaneously learns clustering and generates balance-favorable representations. Our model is based on the autoencoder paradigm incorporating a semisupervised module. Specifically, we introduce a balance-oriented clustering loss and incorporate pairwise constraints into the penalty term as a pluggable module using the Lagrangian multiplier method. Theoretically, we ensure that the proposed model maintains a balanced orientation and provides a comprehensive optimization process. Empirically, we conducted extensive experiments on four datasets to demonstrate significant improvements in clustering performance and balanced measurements. Our code is available at https://github.com/DuannYu/BalancedSemi-TNNLS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ttt完成签到,获得积分10
1秒前
大个应助2哇哇哇采纳,获得10
1秒前
1秒前
小蘑菇应助李梦媛采纳,获得10
1秒前
Mister_CHEN发布了新的文献求助10
1秒前
二雷子发布了新的文献求助10
1秒前
2秒前
天天快乐应助淡然语芙采纳,获得10
2秒前
wxy发布了新的文献求助10
2秒前
自觉书琴完成签到 ,获得积分10
2秒前
结实缘郡完成签到,获得积分10
3秒前
英姑应助羽寞采纳,获得10
3秒前
我是老大应助jinjun采纳,获得10
4秒前
123456发布了新的文献求助10
4秒前
weihe完成签到,获得积分10
4秒前
周周发布了新的文献求助10
4秒前
orixero应助1234采纳,获得10
4秒前
sherrywuxh发布了新的文献求助10
4秒前
李健的小迷弟应助小青采纳,获得10
4秒前
4秒前
4秒前
狄从灵发布了新的文献求助10
5秒前
5秒前
QC完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
小霖关注了科研通微信公众号
5秒前
5秒前
小居居完成签到,获得积分10
6秒前
6秒前
周繁发布了新的文献求助10
6秒前
科研通AI6应助Tofly采纳,获得10
7秒前
wxy完成签到,获得积分10
7秒前
逢彼白雉完成签到,获得积分10
7秒前
8秒前
8秒前
林夕完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629758
求助须知:如何正确求助?哪些是违规求助? 4720546
关于积分的说明 14970558
捐赠科研通 4787741
什么是DOI,文献DOI怎么找? 2556498
邀请新用户注册赠送积分活动 1517659
关于科研通互助平台的介绍 1478271