Toward Balance Deep Semisupervised Clustering

聚类分析 计算机科学 杠杆(统计) 自编码 成对比较 人工智能 编码(集合论) 数据挖掘 机器学习 可扩展性 人工神经网络 模式识别(心理学) 数据库 集合(抽象数据类型) 程序设计语言
作者
Yu Duan,Zhoumin Lu,Rong Wang,Xuelong Li,Feiping Nie
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:2
标识
DOI:10.1109/tnnls.2023.3339680
摘要

The goal of balanced clustering is partitioning data into distinct groups of equal size. Previous studies have attempted to address this problem by designing balanced regularizers or utilizing conventional clustering methods. However, these methods often rely solely on classic methods, which limits their performance and primarily focuses on low-dimensional data. Although neural networks exhibit effective performance on high-dimensional datasets, they struggle to effectively leverage prior knowledge for clustering with a balanced tendency. To overcome the above limitations, we propose deep semisupervised balanced clustering, which simultaneously learns clustering and generates balance-favorable representations. Our model is based on the autoencoder paradigm incorporating a semisupervised module. Specifically, we introduce a balance-oriented clustering loss and incorporate pairwise constraints into the penalty term as a pluggable module using the Lagrangian multiplier method. Theoretically, we ensure that the proposed model maintains a balanced orientation and provides a comprehensive optimization process. Empirically, we conducted extensive experiments on four datasets to demonstrate significant improvements in clustering performance and balanced measurements. Our code is available at https://github.com/DuannYu/BalancedSemi-TNNLS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小猫发布了新的文献求助10
1秒前
3秒前
Wang完成签到 ,获得积分10
3秒前
刘晨旭发布了新的文献求助10
4秒前
云淡风轻一宝完成签到,获得积分10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
今后应助科研通管家采纳,获得10
4秒前
大模型应助zzz采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得30
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
lara应助科研通管家采纳,获得10
5秒前
无花果应助科研通管家采纳,获得30
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
May应助科研通管家采纳,获得20
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
64658应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
烟花应助科研通管家采纳,获得10
6秒前
Lucas应助Freya采纳,获得30
6秒前
Akim应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
华仔应助科研通管家采纳,获得10
6秒前
6秒前
养猪骑士完成签到,获得积分10
6秒前
6秒前
6秒前
李健应助科研通管家采纳,获得10
6秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966029
求助须知:如何正确求助?哪些是违规求助? 3511354
关于积分的说明 11157644
捐赠科研通 3245890
什么是DOI,文献DOI怎么找? 1793218
邀请新用户注册赠送积分活动 874262
科研通“疑难数据库(出版商)”最低求助积分说明 804296