聚类分析
计算机科学
杠杆(统计)
自编码
成对比较
人工智能
编码(集合论)
数据挖掘
机器学习
可扩展性
人工神经网络
模式识别(心理学)
集合(抽象数据类型)
数据库
程序设计语言
作者
Yu Duan,Zhoumin Lu,Rong Wang,Xuelong Li,Feiping Nie
出处
期刊:IEEE transactions on neural networks and learning systems
[Institute of Electrical and Electronics Engineers]
日期:2024-01-01
卷期号:: 1-13
被引量:2
标识
DOI:10.1109/tnnls.2023.3339680
摘要
The goal of balanced clustering is partitioning data into distinct groups of equal size. Previous studies have attempted to address this problem by designing balanced regularizers or utilizing conventional clustering methods. However, these methods often rely solely on classic methods, which limits their performance and primarily focuses on low-dimensional data. Although neural networks exhibit effective performance on high-dimensional datasets, they struggle to effectively leverage prior knowledge for clustering with a balanced tendency. To overcome the above limitations, we propose deep semisupervised balanced clustering, which simultaneously learns clustering and generates balance-favorable representations. Our model is based on the autoencoder paradigm incorporating a semisupervised module. Specifically, we introduce a balance-oriented clustering loss and incorporate pairwise constraints into the penalty term as a pluggable module using the Lagrangian multiplier method. Theoretically, we ensure that the proposed model maintains a balanced orientation and provides a comprehensive optimization process. Empirically, we conducted extensive experiments on four datasets to demonstrate significant improvements in clustering performance and balanced measurements. Our code is available at https://github.com/DuannYu/BalancedSemi-TNNLS.
科研通智能强力驱动
Strongly Powered by AbleSci AI