Large-scale continual learning for ancient Chinese character recognition

计算机科学 人工智能 稳健性(进化) 原始数据 特征(语言学) 提取器 机器学习 比例(比率) 性格(数学) 特征提取 模式识别(心理学) 数学 工程类 生物化学 化学 语言学 哲学 物理 几何学 量子力学 工艺工程 基因 程序设计语言
作者
Yue Xu,Xu-Yao Zhang,Zhaoxiang Zhang,Cheng‐Lin Liu
出处
期刊:Pattern Recognition [Elsevier]
卷期号:150: 110283-110283 被引量:4
标识
DOI:10.1016/j.patcog.2024.110283
摘要

Ancient Chinese character recognition is a challenging problem in the field of pattern recognition. It is difficult to collect all character classes during the training stage due to the numerous classes of ancient Chinese characters and the likelihood of discovering new characters over time. A solution to address this problem is continual learning. However, most continual learning methods are not well-suited for large-scale applications, making them insufficient for solving the problem of ancient Chinese character recognition. Although saving raw data for old classes is a good approach for continual learning to address large-scale problems, it is often infeasible due to the lack of data accessibility in reality. To solve these problems, we propose a large-scale continual learning framework based on the convolutional prototype network (CPN), which does not save raw data for old classes. In this paper, several basic strategies have been proposed for the initial training stage to enhance the feature extraction ability and robustness of the network, which can improve the performance of the model in continual learning. In addition, we propose two practical methods in varying feature space (parameters of feature extractor are changeable) and fixed feature space (parameters of feature extractor are fixed), which enable the model to carry out large-scale continual learning. The proposed method does not save the raw data of old classes and enables simultaneous classification of all existing classes without knowing the incremental batch number. Experiments on the CASIA-AHCDB dataset with 5000 character classes demonstrate the effectiveness and superiority of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xyyy完成签到,获得积分10
刚刚
1秒前
白石杏完成签到,获得积分10
3秒前
ll200207完成签到,获得积分10
4秒前
凶狠的乐巧完成签到,获得积分10
4秒前
Lin发布了新的文献求助10
5秒前
三七发布了新的文献求助10
5秒前
5秒前
鸣隐发布了新的文献求助10
5秒前
6秒前
6秒前
软豆皮完成签到,获得积分10
6秒前
lan完成签到,获得积分10
7秒前
英姑应助松松果采纳,获得10
7秒前
8秒前
8秒前
8秒前
8秒前
chillin发布了新的文献求助10
9秒前
zhui发布了新的文献求助10
9秒前
薪炭林完成签到,获得积分10
10秒前
Rrr发布了新的文献求助10
10秒前
10秒前
SCISSH完成签到 ,获得积分10
10秒前
FEI发布了新的文献求助10
11秒前
科研通AI5应助奔奔采纳,获得10
12秒前
星辰大海应助八八采纳,获得20
12秒前
gaga发布了新的文献求助10
12秒前
木子加y发布了新的文献求助10
12秒前
大大泡泡完成签到,获得积分10
13秒前
852应助zhui采纳,获得10
14秒前
芒果发布了新的文献求助10
14秒前
15秒前
前百年253完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
16秒前
17秒前
xiaoguai完成签到 ,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794