Large-scale continual learning for ancient Chinese character recognition

计算机科学 人工智能 稳健性(进化) 原始数据 特征(语言学) 提取器 机器学习 比例(比率) 性格(数学) 特征提取 模式识别(心理学) 数学 工程类 生物化学 化学 语言学 哲学 物理 几何学 量子力学 工艺工程 基因 程序设计语言
作者
Yue Xu,Xu-Yao Zhang,Zhaoxiang Zhang,Cheng‐Lin Liu
出处
期刊:Pattern Recognition [Elsevier]
卷期号:150: 110283-110283 被引量:7
标识
DOI:10.1016/j.patcog.2024.110283
摘要

Ancient Chinese character recognition is a challenging problem in the field of pattern recognition. It is difficult to collect all character classes during the training stage due to the numerous classes of ancient Chinese characters and the likelihood of discovering new characters over time. A solution to address this problem is continual learning. However, most continual learning methods are not well-suited for large-scale applications, making them insufficient for solving the problem of ancient Chinese character recognition. Although saving raw data for old classes is a good approach for continual learning to address large-scale problems, it is often infeasible due to the lack of data accessibility in reality. To solve these problems, we propose a large-scale continual learning framework based on the convolutional prototype network (CPN), which does not save raw data for old classes. In this paper, several basic strategies have been proposed for the initial training stage to enhance the feature extraction ability and robustness of the network, which can improve the performance of the model in continual learning. In addition, we propose two practical methods in varying feature space (parameters of feature extractor are changeable) and fixed feature space (parameters of feature extractor are fixed), which enable the model to carry out large-scale continual learning. The proposed method does not save the raw data of old classes and enables simultaneous classification of all existing classes without knowing the incremental batch number. Experiments on the CASIA-AHCDB dataset with 5000 character classes demonstrate the effectiveness and superiority of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
JnifferJun发布了新的文献求助10
1秒前
阿尔法突袭完成签到,获得积分10
3秒前
3秒前
神勇乐安完成签到,获得积分10
4秒前
Xiaoxiannv完成签到,获得积分10
5秒前
希望天下0贩的0应助znhy采纳,获得10
6秒前
7秒前
笨笨山芙应助super采纳,获得20
8秒前
幽壑之潜蛟应助crack采纳,获得10
8秒前
ZhonghanWen发布了新的文献求助20
8秒前
9秒前
花薇Liv完成签到,获得积分10
10秒前
朴实水壶发布了新的文献求助10
11秒前
swjfly完成签到,获得积分20
12秒前
JamesPei应助左惋庭采纳,获得10
13秒前
14秒前
15秒前
大模型应助Yi采纳,获得10
15秒前
15秒前
toolate完成签到,获得积分10
16秒前
克莱完成签到 ,获得积分10
18秒前
18秒前
彭于晏应助paddi采纳,获得10
19秒前
情怀应助ad采纳,获得10
20秒前
DQY发布了新的文献求助10
20秒前
20秒前
cc完成签到 ,获得积分10
21秒前
香蕉书兰发布了新的文献求助10
22秒前
小橘子完成签到 ,获得积分10
22秒前
22秒前
天天快乐应助CX330采纳,获得10
22秒前
FG发布了新的文献求助10
22秒前
小幸运发布了新的文献求助10
23秒前
慕长生完成签到,获得积分10
23秒前
bkagyin应助年华采纳,获得10
24秒前
雪笙完成签到 ,获得积分10
25秒前
心事全在脸上完成签到,获得积分10
25秒前
范12发布了新的文献求助10
25秒前
DQY完成签到,获得积分10
26秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743755
求助须知:如何正确求助?哪些是违规求助? 5415833
关于积分的说明 15348312
捐赠科研通 4884362
什么是DOI,文献DOI怎么找? 2625769
邀请新用户注册赠送积分活动 1574598
关于科研通互助平台的介绍 1531510