Large-scale continual learning for ancient Chinese character recognition

计算机科学 人工智能 稳健性(进化) 原始数据 特征(语言学) 提取器 机器学习 比例(比率) 性格(数学) 特征提取 模式识别(心理学) 数学 工程类 生物化学 化学 语言学 哲学 物理 几何学 量子力学 工艺工程 基因 程序设计语言
作者
Yue Xu,Xu-Yao Zhang,Zhaoxiang Zhang,Cheng‐Lin Liu
出处
期刊:Pattern Recognition [Elsevier]
卷期号:150: 110283-110283 被引量:7
标识
DOI:10.1016/j.patcog.2024.110283
摘要

Ancient Chinese character recognition is a challenging problem in the field of pattern recognition. It is difficult to collect all character classes during the training stage due to the numerous classes of ancient Chinese characters and the likelihood of discovering new characters over time. A solution to address this problem is continual learning. However, most continual learning methods are not well-suited for large-scale applications, making them insufficient for solving the problem of ancient Chinese character recognition. Although saving raw data for old classes is a good approach for continual learning to address large-scale problems, it is often infeasible due to the lack of data accessibility in reality. To solve these problems, we propose a large-scale continual learning framework based on the convolutional prototype network (CPN), which does not save raw data for old classes. In this paper, several basic strategies have been proposed for the initial training stage to enhance the feature extraction ability and robustness of the network, which can improve the performance of the model in continual learning. In addition, we propose two practical methods in varying feature space (parameters of feature extractor are changeable) and fixed feature space (parameters of feature extractor are fixed), which enable the model to carry out large-scale continual learning. The proposed method does not save the raw data of old classes and enables simultaneous classification of all existing classes without knowing the incremental batch number. Experiments on the CASIA-AHCDB dataset with 5000 character classes demonstrate the effectiveness and superiority of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助nqbscxttdh采纳,获得10
1秒前
1秒前
CipherSage应助一个西藏采纳,获得10
2秒前
2秒前
铁塔凌云完成签到,获得积分10
3秒前
3秒前
香蕉觅云应助freesialll采纳,获得10
4秒前
4秒前
背后寒烟发布了新的文献求助10
5秒前
5秒前
5秒前
wanci应助sanjun采纳,获得10
7秒前
7秒前
7秒前
烟花应助能干水杯采纳,获得10
8秒前
8秒前
big ben完成签到 ,获得积分0
9秒前
9秒前
情怀应助siriuslee99采纳,获得10
10秒前
雪意发布了新的文献求助10
10秒前
11秒前
小魏发布了新的文献求助10
11秒前
王柯予发布了新的文献求助10
12秒前
sera发布了新的文献求助10
12秒前
心碎的黄焖鸡完成签到 ,获得积分10
13秒前
小椰喃喃完成签到,获得积分10
13秒前
13秒前
平淡的绮彤完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
小马甲应助沉静胜采纳,获得10
15秒前
pihriyyy完成签到,获得积分10
17秒前
qss8807发布了新的文献求助10
17秒前
金木应助无私小猫咪采纳,获得10
17秒前
18秒前
siriuslee99完成签到,获得积分10
19秒前
宋子涵完成签到 ,获得积分10
19秒前
king发布了新的文献求助10
19秒前
顾矜应助77采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646573
求助须知:如何正确求助?哪些是违规求助? 4771751
关于积分的说明 15035677
捐赠科研通 4805321
什么是DOI,文献DOI怎么找? 2569625
邀请新用户注册赠送积分活动 1526601
关于科研通互助平台的介绍 1485858