Large-scale continual learning for ancient Chinese character recognition

计算机科学 人工智能 稳健性(进化) 原始数据 特征(语言学) 提取器 机器学习 比例(比率) 性格(数学) 特征提取 模式识别(心理学) 数学 工程类 基因 量子力学 生物化学 物理 哲学 语言学 化学 程序设计语言 工艺工程 几何学
作者
Yue Xu,Xu-Yao Zhang,Zhaoxiang Zhang,Cheng‐Lin Liu
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:150: 110283-110283 被引量:4
标识
DOI:10.1016/j.patcog.2024.110283
摘要

Ancient Chinese character recognition is a challenging problem in the field of pattern recognition. It is difficult to collect all character classes during the training stage due to the numerous classes of ancient Chinese characters and the likelihood of discovering new characters over time. A solution to address this problem is continual learning. However, most continual learning methods are not well-suited for large-scale applications, making them insufficient for solving the problem of ancient Chinese character recognition. Although saving raw data for old classes is a good approach for continual learning to address large-scale problems, it is often infeasible due to the lack of data accessibility in reality. To solve these problems, we propose a large-scale continual learning framework based on the convolutional prototype network (CPN), which does not save raw data for old classes. In this paper, several basic strategies have been proposed for the initial training stage to enhance the feature extraction ability and robustness of the network, which can improve the performance of the model in continual learning. In addition, we propose two practical methods in varying feature space (parameters of feature extractor are changeable) and fixed feature space (parameters of feature extractor are fixed), which enable the model to carry out large-scale continual learning. The proposed method does not save the raw data of old classes and enables simultaneous classification of all existing classes without knowing the incremental batch number. Experiments on the CASIA-AHCDB dataset with 5000 character classes demonstrate the effectiveness and superiority of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助wangli采纳,获得10
1秒前
喜悦兔子完成签到 ,获得积分0
1秒前
lsq关闭了lsq文献求助
2秒前
zhangyidian应助求知的学者采纳,获得30
3秒前
冰魂应助我请问呢采纳,获得200
3秒前
yunwen完成签到,获得积分20
3秒前
4秒前
6秒前
fff发布了新的文献求助10
6秒前
Yzz发布了新的文献求助10
8秒前
ZM完成签到,获得积分10
8秒前
hy发布了新的文献求助10
9秒前
饱满一刀完成签到,获得积分10
10秒前
11秒前
忧郁小蘑菇完成签到,获得积分10
12秒前
luckyhappy发布了新的文献求助10
14秒前
15秒前
幸福发布了新的文献求助10
15秒前
斯文败类应助执着南琴采纳,获得10
15秒前
16秒前
彭于晏应助dong采纳,获得30
16秒前
17秒前
17秒前
文献文献完成签到 ,获得积分10
18秒前
思源应助海东南采纳,获得10
18秒前
Hey发布了新的文献求助20
19秒前
烂漫成仁发布了新的文献求助10
21秒前
21秒前
22秒前
耳机单蹦发布了新的文献求助10
25秒前
25秒前
执着的笑南完成签到,获得积分10
28秒前
执着南琴发布了新的文献求助10
31秒前
dong完成签到,获得积分10
35秒前
36秒前
39秒前
ma完成签到,获得积分10
40秒前
41秒前
YU完成签到 ,获得积分20
42秒前
共享精神应助伶俐的冥幽采纳,获得10
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775612
求助须知:如何正确求助?哪些是违规求助? 3321229
关于积分的说明 10204285
捐赠科研通 3036074
什么是DOI,文献DOI怎么找? 1665997
邀请新用户注册赠送积分活动 797213
科研通“疑难数据库(出版商)”最低求助积分说明 757766