Large-scale continual learning for ancient Chinese character recognition

计算机科学 人工智能 稳健性(进化) 原始数据 特征(语言学) 提取器 机器学习 比例(比率) 性格(数学) 特征提取 模式识别(心理学) 数学 工程类 基因 量子力学 生物化学 物理 哲学 语言学 化学 程序设计语言 工艺工程 几何学
作者
Yue Xu,Xu-Yao Zhang,Zhaoxiang Zhang,Cheng‐Lin Liu
出处
期刊:Pattern Recognition [Elsevier]
卷期号:150: 110283-110283 被引量:4
标识
DOI:10.1016/j.patcog.2024.110283
摘要

Ancient Chinese character recognition is a challenging problem in the field of pattern recognition. It is difficult to collect all character classes during the training stage due to the numerous classes of ancient Chinese characters and the likelihood of discovering new characters over time. A solution to address this problem is continual learning. However, most continual learning methods are not well-suited for large-scale applications, making them insufficient for solving the problem of ancient Chinese character recognition. Although saving raw data for old classes is a good approach for continual learning to address large-scale problems, it is often infeasible due to the lack of data accessibility in reality. To solve these problems, we propose a large-scale continual learning framework based on the convolutional prototype network (CPN), which does not save raw data for old classes. In this paper, several basic strategies have been proposed for the initial training stage to enhance the feature extraction ability and robustness of the network, which can improve the performance of the model in continual learning. In addition, we propose two practical methods in varying feature space (parameters of feature extractor are changeable) and fixed feature space (parameters of feature extractor are fixed), which enable the model to carry out large-scale continual learning. The proposed method does not save the raw data of old classes and enables simultaneous classification of all existing classes without knowing the incremental batch number. Experiments on the CASIA-AHCDB dataset with 5000 character classes demonstrate the effectiveness and superiority of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
医生科学家完成签到 ,获得积分10
刚刚
Y123发布了新的文献求助10
刚刚
坦率梦易完成签到,获得积分10
1秒前
1秒前
lani完成签到 ,获得积分10
1秒前
4秒前
4秒前
莉莉完成签到,获得积分10
5秒前
oywc应助苏苏采纳,获得10
6秒前
8秒前
8秒前
9秒前
ggg完成签到,获得积分10
9秒前
润泽无语完成签到,获得积分10
9秒前
半之半完成签到,获得积分10
10秒前
善学以致用应助Frankwei采纳,获得10
11秒前
这个夏天完成签到,获得积分10
11秒前
11秒前
12秒前
润泽无语发布了新的文献求助10
13秒前
13秒前
俗签完成签到,获得积分10
14秒前
好好好1234完成签到,获得积分10
14秒前
14秒前
路人佳发布了新的文献求助10
16秒前
KimTran完成签到,获得积分10
17秒前
17秒前
17秒前
繁荣的秋发布了新的文献求助10
18秒前
失眠傲白发布了新的文献求助30
18秒前
18秒前
坦率的棉花糖完成签到,获得积分10
18秒前
ding应助FUsir采纳,获得10
19秒前
平淡的自行车完成签到,获得积分10
19秒前
19秒前
西瓜完成签到,获得积分10
20秒前
Yolanda完成签到 ,获得积分10
21秒前
ZhangBo发布了新的文献求助10
22秒前
呵呵呵悦发布了新的文献求助10
22秒前
orixero应助繁荣的秋采纳,获得10
23秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149540
求助须知:如何正确求助?哪些是违规求助? 2800615
关于积分的说明 7840805
捐赠科研通 2458144
什么是DOI,文献DOI怎么找? 1308295
科研通“疑难数据库(出版商)”最低求助积分说明 628471
版权声明 601706