Large-scale continual learning for ancient Chinese character recognition

计算机科学 人工智能 稳健性(进化) 原始数据 特征(语言学) 提取器 机器学习 比例(比率) 性格(数学) 特征提取 模式识别(心理学) 数学 工程类 生物化学 化学 语言学 哲学 物理 几何学 量子力学 工艺工程 基因 程序设计语言
作者
Yue Xu,Xu-Yao Zhang,Zhaoxiang Zhang,Cheng‐Lin Liu
出处
期刊:Pattern Recognition [Elsevier]
卷期号:150: 110283-110283 被引量:7
标识
DOI:10.1016/j.patcog.2024.110283
摘要

Ancient Chinese character recognition is a challenging problem in the field of pattern recognition. It is difficult to collect all character classes during the training stage due to the numerous classes of ancient Chinese characters and the likelihood of discovering new characters over time. A solution to address this problem is continual learning. However, most continual learning methods are not well-suited for large-scale applications, making them insufficient for solving the problem of ancient Chinese character recognition. Although saving raw data for old classes is a good approach for continual learning to address large-scale problems, it is often infeasible due to the lack of data accessibility in reality. To solve these problems, we propose a large-scale continual learning framework based on the convolutional prototype network (CPN), which does not save raw data for old classes. In this paper, several basic strategies have been proposed for the initial training stage to enhance the feature extraction ability and robustness of the network, which can improve the performance of the model in continual learning. In addition, we propose two practical methods in varying feature space (parameters of feature extractor are changeable) and fixed feature space (parameters of feature extractor are fixed), which enable the model to carry out large-scale continual learning. The proposed method does not save the raw data of old classes and enables simultaneous classification of all existing classes without knowing the incremental batch number. Experiments on the CASIA-AHCDB dataset with 5000 character classes demonstrate the effectiveness and superiority of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Lucas应助DWQ采纳,获得10
1秒前
所所应助ZZQ采纳,获得10
1秒前
2秒前
4秒前
WW完成签到 ,获得积分10
4秒前
zZZ完成签到 ,获得积分10
5秒前
yao发布了新的文献求助30
5秒前
冷艳的寻冬完成签到,获得积分10
5秒前
6秒前
万能图书馆应助段yt采纳,获得10
6秒前
6秒前
7秒前
NN完成签到,获得积分10
8秒前
8秒前
Ty完成签到,获得积分10
8秒前
DWQ完成签到,获得积分10
8秒前
9秒前
10秒前
10秒前
LLL完成签到,获得积分10
11秒前
jony发布了新的文献求助10
11秒前
killer完成签到,获得积分20
11秒前
12秒前
国家栋梁发布了新的文献求助10
12秒前
米线儿完成签到,获得积分10
13秒前
汤襄发布了新的文献求助10
14秒前
14秒前
DWQ发布了新的文献求助10
14秒前
14秒前
霁星河完成签到,获得积分10
16秒前
orixero应助caas6采纳,获得10
16秒前
16秒前
17秒前
17秒前
任侠传发布了新的文献求助10
17秒前
善良初蝶完成签到,获得积分10
17秒前
17秒前
研友_VZG7GZ应助聪慧石头采纳,获得10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735420
求助须知:如何正确求助?哪些是违规求助? 5360561
关于积分的说明 15329871
捐赠科研通 4879609
什么是DOI,文献DOI怎么找? 2622093
邀请新用户注册赠送积分活动 1571250
关于科研通互助平台的介绍 1528108