Large-scale continual learning for ancient Chinese character recognition

计算机科学 人工智能 稳健性(进化) 原始数据 特征(语言学) 提取器 机器学习 比例(比率) 性格(数学) 特征提取 模式识别(心理学) 数学 工程类 基因 量子力学 生物化学 物理 哲学 语言学 化学 程序设计语言 工艺工程 几何学
作者
Yue Xu,Xu-Yao Zhang,Zhaoxiang Zhang,Cheng‐Lin Liu
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:150: 110283-110283 被引量:7
标识
DOI:10.1016/j.patcog.2024.110283
摘要

Ancient Chinese character recognition is a challenging problem in the field of pattern recognition. It is difficult to collect all character classes during the training stage due to the numerous classes of ancient Chinese characters and the likelihood of discovering new characters over time. A solution to address this problem is continual learning. However, most continual learning methods are not well-suited for large-scale applications, making them insufficient for solving the problem of ancient Chinese character recognition. Although saving raw data for old classes is a good approach for continual learning to address large-scale problems, it is often infeasible due to the lack of data accessibility in reality. To solve these problems, we propose a large-scale continual learning framework based on the convolutional prototype network (CPN), which does not save raw data for old classes. In this paper, several basic strategies have been proposed for the initial training stage to enhance the feature extraction ability and robustness of the network, which can improve the performance of the model in continual learning. In addition, we propose two practical methods in varying feature space (parameters of feature extractor are changeable) and fixed feature space (parameters of feature extractor are fixed), which enable the model to carry out large-scale continual learning. The proposed method does not save the raw data of old classes and enables simultaneous classification of all existing classes without knowing the incremental batch number. Experiments on the CASIA-AHCDB dataset with 5000 character classes demonstrate the effectiveness and superiority of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思苇发布了新的文献求助10
1秒前
1秒前
Gray完成签到,获得积分20
1秒前
研友_VZG7GZ应助隐形的乐枫采纳,获得10
2秒前
3秒前
任我行完成签到,获得积分10
3秒前
Atlantis完成签到,获得积分10
3秒前
3秒前
DOUBLE完成签到,获得积分10
3秒前
ola完成签到,获得积分10
4秒前
玩命的十三完成签到 ,获得积分10
4秒前
yoyo完成签到 ,获得积分10
4秒前
鹿鹿完成签到,获得积分10
5秒前
jian94完成签到,获得积分10
6秒前
小胡完成签到,获得积分10
6秒前
xiaoyao完成签到,获得积分10
6秒前
温婉的乞发布了新的文献求助10
6秒前
朴素亦绿完成签到,获得积分10
6秒前
Neko完成签到,获得积分10
6秒前
激动的醉香完成签到,获得积分10
7秒前
mimi关注了科研通微信公众号
8秒前
安的沛白完成签到,获得积分10
8秒前
8秒前
Cam发布了新的文献求助10
9秒前
饱满的鑫完成签到,获得积分10
9秒前
今后应助科研通管家采纳,获得10
9秒前
Criminology34应助13_DQ采纳,获得10
9秒前
刘超D完成签到,获得积分10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
小青椒应助科研通管家采纳,获得200
10秒前
浮游应助科研通管家采纳,获得10
10秒前
opticsLM完成签到,获得积分10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
Ayan完成签到,获得积分10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5256697
求助须知:如何正确求助?哪些是违规求助? 4418858
关于积分的说明 13753828
捐赠科研通 4292073
什么是DOI,文献DOI怎么找? 2355297
邀请新用户注册赠送积分活动 1351736
关于科研通互助平台的介绍 1312485