亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial intelligence in healthcare: combining deep learning and Bayesian optimization to forecast COVID-19 confirmed cases

2019年冠状病毒病(COVID-19) 大流行 医疗保健 人工智能 贝叶斯概率 计算机科学 心理干预 机器学习 计量经济学 心理学 运筹学 医学 经济 经济增长 数学 护理部 疾病 病理 传染病(医学专业)
作者
Areej Alhhazmi,Ahmad Alferidi,Yahya A. Almutawif,Hatim Makhdoom,Hibah M. Albasri,Sami Ben Slama
出处
期刊:Frontiers in artificial intelligence [Frontiers Media]
卷期号:6
标识
DOI:10.3389/frai.2023.1327355
摘要

Healthcare is a topic of significant concern within the academic and business sectors. The COVID-19 pandemic has had a considerable effect on the health of people worldwide. The rapid increase in cases adversely affects a nation's economy, public health, and residents' social and personal well-being. Improving the precision of COVID-19 infection forecasts can aid in making informed decisions regarding interventions, given the pandemic's harmful impact on numerous aspects of human life, such as health and the economy. This study aims to predict the number of confirmed COVID-19 cases in Saudi Arabia using Bayesian optimization (BOA) and deep learning (DL) methods. Two methods were assessed for their efficacy in predicting the occurrence of positive cases of COVID-19. The research employed data from confirmed COVID-19 cases in Saudi Arabia (SA), the United Kingdom (UK), and Tunisia (TU) from 2020 to 2021. The findings from the BOA model indicate that accurately predicting the number of COVID-19 positive cases is difficult due to the BOA projections needing to align with the assumptions. Thus, a DL approach was utilized to enhance the precision of COVID-19 positive case prediction in South Africa. The DQN model performed better than the BOA model when assessing RMSE and MAPE values. The model operates on a local server infrastructure, where the trained policy is transmitted solely to DQN. DQN formulated a reward function to amplify the efficiency of the DQN algorithm. By examining the rate of change and duration of sleep in the test data, this function can enhance the DQN model's training. Based on simulation findings, it can decrease the DQN work cycle by roughly 28% and diminish data overhead by more than 50% on average.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yue完成签到,获得积分20
22秒前
义气的书雁完成签到,获得积分10
33秒前
巴山夜雨完成签到,获得积分10
1分钟前
3分钟前
邓明发布了新的文献求助10
3分钟前
驭剑士发布了新的文献求助10
3分钟前
4分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
shc发布了新的文献求助10
4分钟前
bkagyin应助shc采纳,获得10
5分钟前
neil_match完成签到,获得积分10
5分钟前
Demi_Ming完成签到,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
心灵美语兰完成签到 ,获得积分10
6分钟前
Spring完成签到,获得积分10
6分钟前
gincle完成签到 ,获得积分10
7分钟前
老石完成签到 ,获得积分10
7分钟前
玛琳卡迪马完成签到,获得积分10
7分钟前
7分钟前
威武的蘑菇完成签到,获得积分10
8分钟前
10分钟前
10分钟前
10分钟前
Wfmmm发布了新的文献求助10
10分钟前
酷波er应助科研通管家采纳,获得10
10分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
着急的小熊猫完成签到,获得积分10
10分钟前
11分钟前
11分钟前
踏实乌冬面完成签到,获得积分10
11分钟前
19950728完成签到 ,获得积分10
12分钟前
14分钟前
科研通AI5应助fcxzvb采纳,获得100
15分钟前
15分钟前
ceeray23发布了新的文献求助20
15分钟前
15分钟前
fcxzvb发布了新的文献求助100
16分钟前
小二郎应助ceeray23采纳,获得20
16分钟前
高分求助中
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 400
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3709134
求助须知:如何正确求助?哪些是违规求助? 3257286
关于积分的说明 9904284
捐赠科研通 2970204
什么是DOI,文献DOI怎么找? 1629041
邀请新用户注册赠送积分活动 772427
科研通“疑难数据库(出版商)”最低求助积分说明 743791