A Novel Neural Network for Joint Lesion Segmentation and Confidence Score Generation from PET Image

分割 计算机科学 人工智能 置信区间 模式识别(心理学) 图像分割 鉴别器 人工神经网络 尺度空间分割 计算机视觉 数学 统计 探测器 电信
作者
Melika Daraee,Elham Saeedzadeh,Pardis Ghaffarian,Hossein Arabi
标识
DOI:10.1109/nss/mic44845.2022.10399124
摘要

Lesions segmentation from PET images is considered very high challenging task compared to the anatomical organ delineation regarding irregular and/or unpredictable shape/morphology of lesions. Moreover, lesion segmentation from PET images alone would add to the complexity of the problem owing to the poor spatial resolution and high levels of noise. Thus, dedicated/optimized segmentation models should be developed for identification and delineation of malignant lesions from PET images. To this end, this work set out to propose a novel solution for this challenge. Moreover, the focus of this study is to introduce an automated model assigning a confidence score to the resulting segmentation in order to indicate to what extend specialists could trust the outcomes. This would greatly reduce the workload and gross errors in clinical practice. To this end, a GAN network was developed in which a discriminator repeatedly evaluates the accuracy of the estimated lesion segmentation. This module is trained to identify the accurate estimations. This module sends feedback to the primary segmentation network to improve the overall segmentation accuracy as well as providing a confidence score which indicates the accuracy of the final segmentation. Regarding the quantitative analysis of the proposed network, the incorporation of the confidence score estimator improved the segmentation accuracy of the model from 85.9 % (without) to 86.8% (with the confidence module). Moreover, the confidence module enabled to estimate the accuracy of the resulting segmentation with a mean absolute error (MAE) of 0.084 compared to the original model with MAE of 0.159. The proposed confidence score estimator would minimize the incidence of gross errors in clinical practice as well as reducing the workload for verification of the resulting segmentations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江流儿发布了新的文献求助10
刚刚
Lucas应助神华采纳,获得10
1秒前
卫澜发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
爱吃巧乐兹的猹完成签到 ,获得积分20
4秒前
科研通AI2S应助yinwenchen采纳,获得10
4秒前
淼淼之锋完成签到 ,获得积分10
4秒前
林小雨完成签到,获得积分10
5秒前
秃驴发布了新的文献求助10
6秒前
Apr9810h完成签到 ,获得积分10
7秒前
可耐的三德完成签到 ,获得积分10
8秒前
9秒前
10秒前
10秒前
星辰大海应助11采纳,获得10
11秒前
漏晨完成签到,获得积分10
12秒前
天天快乐应助lihan123采纳,获得10
12秒前
江流儿完成签到,获得积分10
12秒前
秃驴完成签到,获得积分10
13秒前
13秒前
huihuihui发布了新的文献求助10
14秒前
田様应助郝宝真采纳,获得10
15秒前
神华发布了新的文献求助10
15秒前
完美世界应助pf采纳,获得10
16秒前
赘婿应助卫澜采纳,获得10
18秒前
18秒前
niuya完成签到,获得积分10
19秒前
20秒前
MHK完成签到,获得积分20
20秒前
21秒前
香精完成签到,获得积分10
23秒前
yinwenchen完成签到,获得积分10
24秒前
龙川发布了新的文献求助10
25秒前
八戒完成签到 ,获得积分0
25秒前
1111完成签到,获得积分10
25秒前
11发布了新的文献求助10
25秒前
恋雪发布了新的文献求助10
25秒前
华贞完成签到,获得积分10
26秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165460
求助须知:如何正确求助?哪些是违规求助? 2816499
关于积分的说明 7912912
捐赠科研通 2476092
什么是DOI,文献DOI怎么找? 1318663
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388