亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Novel Neural Network for Joint Lesion Segmentation and Confidence Score Generation from PET Image

分割 计算机科学 人工智能 置信区间 模式识别(心理学) 图像分割 鉴别器 人工神经网络 尺度空间分割 计算机视觉 数学 统计 探测器 电信
作者
Melika Daraee,Elham Saeedzadeh,Pardis Ghaffarian,Hossein Arabi
标识
DOI:10.1109/nss/mic44845.2022.10399124
摘要

Lesions segmentation from PET images is considered very high challenging task compared to the anatomical organ delineation regarding irregular and/or unpredictable shape/morphology of lesions. Moreover, lesion segmentation from PET images alone would add to the complexity of the problem owing to the poor spatial resolution and high levels of noise. Thus, dedicated/optimized segmentation models should be developed for identification and delineation of malignant lesions from PET images. To this end, this work set out to propose a novel solution for this challenge. Moreover, the focus of this study is to introduce an automated model assigning a confidence score to the resulting segmentation in order to indicate to what extend specialists could trust the outcomes. This would greatly reduce the workload and gross errors in clinical practice. To this end, a GAN network was developed in which a discriminator repeatedly evaluates the accuracy of the estimated lesion segmentation. This module is trained to identify the accurate estimations. This module sends feedback to the primary segmentation network to improve the overall segmentation accuracy as well as providing a confidence score which indicates the accuracy of the final segmentation. Regarding the quantitative analysis of the proposed network, the incorporation of the confidence score estimator improved the segmentation accuracy of the model from 85.9 % (without) to 86.8% (with the confidence module). Moreover, the confidence module enabled to estimate the accuracy of the resulting segmentation with a mean absolute error (MAE) of 0.084 compared to the original model with MAE of 0.159. The proposed confidence score estimator would minimize the incidence of gross errors in clinical practice as well as reducing the workload for verification of the resulting segmentations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
5秒前
zhaop发布了新的文献求助10
9秒前
超级微笑完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助20
20秒前
28秒前
冷艳妙柏完成签到,获得积分10
29秒前
谨慎鞅发布了新的文献求助10
31秒前
34秒前
77发布了新的文献求助10
35秒前
wop111发布了新的文献求助10
39秒前
华仔应助谨慎鞅采纳,获得10
40秒前
77完成签到,获得积分10
46秒前
55秒前
Lz发布了新的文献求助10
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
Lz完成签到 ,获得积分10
1分钟前
1分钟前
Banbor2021完成签到,获得积分0
1分钟前
科目三应助wop111采纳,获得10
1分钟前
激昂的寒荷完成签到 ,获得积分10
1分钟前
bkagyin应助lzy采纳,获得30
2分钟前
winkin完成签到,获得积分10
2分钟前
顾矜应助zhaop采纳,获得10
2分钟前
默默白桃完成签到 ,获得积分10
2分钟前
隐形曼青应助winkin采纳,获得10
2分钟前
2分钟前
zhaop发布了新的文献求助10
2分钟前
谨慎的雁桃完成签到,获得积分10
2分钟前
2分钟前
2分钟前
ZgnomeshghT发布了新的文献求助10
2分钟前
3分钟前
3分钟前
小马甲应助ZgnomeshghT采纳,获得10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
苦瓜大王发布了新的文献求助10
3分钟前
JEREMIAH完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
RF and Microwave Power Amplifiers 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5019288
求助须知:如何正确求助?哪些是违规求助? 4258312
关于积分的说明 13270935
捐赠科研通 4063164
什么是DOI,文献DOI怎么找? 2222498
邀请新用户注册赠送积分活动 1231537
关于科研通互助平台的介绍 1154560