Identification of high-risk imaging features in hypertrophic cardiomyopathy using electrocardiography: A deep-learning approach

医学 肥厚性心肌病 心电图 心脏病学 磁共振成像 心肌病 内科学 心脏磁共振 植入式心律转复除颤器 心源性猝死 心脏磁共振成像 放射科 心力衰竭
作者
Richard Carrick,Hisham Ahamed,Eric Sung,Martin S. Maron,Christopher Madias,Vennela Avula,Rachael Studley,Bao Chen,Nadia Bokhari,Erick Quintana,Ramiah Rajeshkannan,Barry J. Maron,Kathérine C. Wu,Ethan J. Rowin
出处
期刊:Heart Rhythm [Elsevier]
卷期号:21 (8): 1390-1397 被引量:7
标识
DOI:10.1016/j.hrthm.2024.01.031
摘要

Patients with hypertrophic cardiomyopathy (HCM) are at risk of sudden death, and individuals with ≥1 major risk markers are considered for primary prevention implantable cardioverter-defibrillators. Guidelines recommend cardiac magnetic resonance (CMR) imaging to identify high-risk imaging features. However, CMR imaging is resource intensive and is not widely accessible worldwide.The purpose of this study was to develop electrocardiogram (ECG) deep-learning (DL) models for the identification of patients with HCM and high-risk imaging features.Patients with HCM evaluated at Tufts Medical Center (N = 1930; Boston, MA) were used to develop ECG-DL models for the prediction of high-risk imaging features: systolic dysfunction, massive hypertrophy (≥30 mm), apical aneurysm, and extensive late gadolinium enhancement. ECG-DL models were externally validated in a cohort of patients with HCM from the Amrita Hospital HCM Center (N = 233; Kochi, India).ECG-DL models reliably identified high-risk features (systolic dysfunction, massive hypertrophy, apical aneurysm, and extensive late gadolinium enhancement) during holdout testing (c-statistic 0.72, 0.83, 0.93, and 0.76) and external validation (c-statistic 0.71, 0.76, 0.91, and 0.68). A hypothetical screening strategy using echocardiography combined with ECG-DL-guided selective CMR use demonstrated a sensitivity of 97% for identifying patients with high-risk features while reducing the number of recommended CMRs by 61%. The negative predictive value with this screening strategy for the absence of high-risk features in patients without ECG-DL recommendation for CMR was 99.5%.In HCM, novel ECG-DL models reliably identified patients with high-risk imaging features while offering the potential to reduce CMR testing requirements in underresourced areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助多宝采纳,获得10
刚刚
DSC发布了新的文献求助10
刚刚
鑫鑫完成签到 ,获得积分10
刚刚
刚刚
1秒前
今夕发布了新的文献求助10
1秒前
leozhe发布了新的文献求助10
1秒前
2秒前
田様应助Mengfanrong采纳,获得10
3秒前
袁儿发布了新的文献求助10
3秒前
3秒前
不配.应助飞的更高采纳,获得10
3秒前
Orange应助YLJGJZ采纳,获得10
3秒前
花生仁完成签到,获得积分10
4秒前
乐乐乐乐乐乐应助夏天采纳,获得10
4秒前
5秒前
enen发布了新的文献求助10
5秒前
Winter完成签到,获得积分10
6秒前
听说外面下雨了完成签到,获得积分10
8秒前
科目三应助haoxuesheng采纳,获得10
8秒前
8秒前
寻文完成签到,获得积分10
9秒前
大模型应助小次采纳,获得10
9秒前
夏天完成签到,获得积分10
9秒前
9秒前
充电宝应助今夕采纳,获得10
9秒前
9秒前
yang发布了新的文献求助10
10秒前
怡然铃铛发布了新的文献求助10
10秒前
10秒前
尊敬荆完成签到,获得积分10
11秒前
11秒前
fsaf完成签到,获得积分10
11秒前
dopamine完成签到,获得积分10
12秒前
12秒前
哈哈哈哈发布了新的文献求助30
12秒前
13秒前
13秒前
13秒前
程宝贝关注了科研通微信公众号
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152976
求助须知:如何正确求助?哪些是违规求助? 2804157
关于积分的说明 7857469
捐赠科研通 2461911
什么是DOI,文献DOI怎么找? 1310570
科研通“疑难数据库(出版商)”最低求助积分说明 629314
版权声明 601788