Single-shot digital holography with improved twin-image noise suppression using a diffusion-based generative model

全息术 计算机科学 噪音(视频) 计算机视觉 人工智能 工件(错误) 生成语法 采样(信号处理) 图像质量 数字全息术 光学(聚焦) 图像(数学) 各项异性扩散 迭代重建 生成模型 物理 光学 滤波器(信号处理)
作者
Yunping Zhang,Xihui Liu,Edmund Y. Lam
标识
DOI:10.1117/12.3000660
摘要

Due to the loss of phase information in images captured by intensity-only measurements, the numerical reconstruction of inline digital holographic imaging suffers from the undesirable twin-image artifact. This artifact presents as an out-of-focus conjugate at the virtual image plane and reduces the reconstruction quality. In this work, we propose a diffusion-based generative model that eliminates such defocus noise in single-shot inline digital holography. The diffusion-based generative model learns the implicit prior of the underlying data distribution by progressively injecting random noise in data and then generating high-quality samples by reversing this process. Although the diffusion model has been successful in various challenging tasks in computer vision, its potential in scientific imaging has not been fully explored yet, and one challenge is the inherent randomness in its reverse sampling process. To address this issue, we incorporate the underlying physics of image formation as a prior, which constrains the possible samples from the data distribution. Specifically, we include an extra gradient correction step in each reverse sampling process to introduce data consistency and generate better results. We demonstrate the feasibility of our approach using simulated and experimental holograms and compare our results with previous methods. Our model recovers detailed object information and significantly suppresses the twin-image noise. The proposed method is explainable, generalizable, and transferable to other samples from various distributions, making it a promising tool for digital holographic reconstruction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阔达蓝血完成签到,获得积分10
2秒前
CipherSage应助超级的板栗采纳,获得10
2秒前
刘shuchang发布了新的文献求助10
2秒前
小王发布了新的文献求助10
4秒前
你看起来很好吃完成签到,获得积分10
4秒前
sifan发布了新的文献求助10
5秒前
刻苦秋烟完成签到,获得积分20
6秒前
美味肉蟹煲完成签到,获得积分10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得100
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
陈末应助科研通管家采纳,获得10
8秒前
打打应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
9秒前
愉快天亦完成签到,获得积分10
10秒前
彭于晏应助椰子采纳,获得10
12秒前
壮观复天完成签到 ,获得积分10
13秒前
HH完成签到,获得积分20
14秒前
冰河发布了新的文献求助10
14秒前
乐意李发布了新的文献求助30
16秒前
XIA完成签到 ,获得积分10
17秒前
可爱的函函应助顺利的愫采纳,获得10
17秒前
lllable关注了科研通微信公众号
18秒前
善学以致用应助刻苦秋烟采纳,获得10
19秒前
zyc1998完成签到,获得积分10
19秒前
20秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
美好斓发布了新的文献求助10
22秒前
Doctor.TANG完成签到 ,获得积分10
22秒前
24秒前
星辰大海应助可乐采纳,获得10
24秒前
24秒前
科研通AI6应助Kevin Li采纳,获得10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5416958
求助须知:如何正确求助?哪些是违规求助? 4533026
关于积分的说明 14137984
捐赠科研通 4449106
什么是DOI,文献DOI怎么找? 2440575
邀请新用户注册赠送积分活动 1432430
关于科研通互助平台的介绍 1409858