Single-shot digital holography with improved twin-image noise suppression using a diffusion-based generative model

全息术 计算机科学 噪音(视频) 计算机视觉 人工智能 工件(错误) 生成语法 采样(信号处理) 图像质量 数字全息术 光学(聚焦) 图像(数学) 各项异性扩散 迭代重建 生成模型 物理 光学 滤波器(信号处理)
作者
Yunping Zhang,Xihui Liu,Edmund Y. Lam
标识
DOI:10.1117/12.3000660
摘要

Due to the loss of phase information in images captured by intensity-only measurements, the numerical reconstruction of inline digital holographic imaging suffers from the undesirable twin-image artifact. This artifact presents as an out-of-focus conjugate at the virtual image plane and reduces the reconstruction quality. In this work, we propose a diffusion-based generative model that eliminates such defocus noise in single-shot inline digital holography. The diffusion-based generative model learns the implicit prior of the underlying data distribution by progressively injecting random noise in data and then generating high-quality samples by reversing this process. Although the diffusion model has been successful in various challenging tasks in computer vision, its potential in scientific imaging has not been fully explored yet, and one challenge is the inherent randomness in its reverse sampling process. To address this issue, we incorporate the underlying physics of image formation as a prior, which constrains the possible samples from the data distribution. Specifically, we include an extra gradient correction step in each reverse sampling process to introduce data consistency and generate better results. We demonstrate the feasibility of our approach using simulated and experimental holograms and compare our results with previous methods. Our model recovers detailed object information and significantly suppresses the twin-image noise. The proposed method is explainable, generalizable, and transferable to other samples from various distributions, making it a promising tool for digital holographic reconstruction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助孟严青采纳,获得10
2秒前
3秒前
3秒前
赘婿应助rym0404采纳,获得10
4秒前
Mia233发布了新的文献求助10
4秒前
大方的书雁完成签到 ,获得积分10
4秒前
zhenzheng完成签到 ,获得积分0
5秒前
LELIN完成签到,获得积分10
6秒前
7秒前
殷勤的紫槐发布了新的文献求助200
7秒前
花开富贵完成签到 ,获得积分10
7秒前
打打应助zhuxf采纳,获得10
7秒前
小二郎应助糊图酱采纳,获得10
8秒前
9秒前
9秒前
10秒前
夜猫子完成签到,获得积分10
11秒前
淡然紫寒发布了新的文献求助20
11秒前
hs完成签到,获得积分10
11秒前
沈惠映完成签到 ,获得积分10
12秒前
12秒前
在水一方应助周佳炜采纳,获得10
14秒前
陶醉觅夏发布了新的文献求助10
15秒前
向南发布了新的文献求助10
16秒前
孤独半兰发布了新的文献求助10
16秒前
单薄雁玉发布了新的文献求助20
16秒前
斯人如机发布了新的文献求助10
21秒前
风中淇完成签到,获得积分10
21秒前
妖妖灵完成签到,获得积分10
21秒前
威武的初曼完成签到 ,获得积分10
21秒前
Ava应助科研通管家采纳,获得10
23秒前
丘比特应助科研通管家采纳,获得20
23秒前
上官若男应助科研通管家采纳,获得10
23秒前
清风明月应助科研通管家采纳,获得10
23秒前
所所应助科研通管家采纳,获得10
24秒前
烟花应助科研通管家采纳,获得10
24秒前
ding应助科研通管家采纳,获得10
24秒前
汉堡包应助科研通管家采纳,获得10
24秒前
wanci应助科研通管家采纳,获得10
24秒前
天天快乐应助科研通管家采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5305537
求助须知:如何正确求助?哪些是违规求助? 4451621
关于积分的说明 13852618
捐赠科研通 4339073
什么是DOI,文献DOI怎么找? 2382334
邀请新用户注册赠送积分活动 1377393
关于科研通互助平台的介绍 1344925