Single-shot digital holography with improved twin-image noise suppression using a diffusion-based generative model

全息术 弹丸 计算机科学 噪音(视频) 计算机视觉 人工智能 散粒噪声 生成语法 扩散 数字全息术 图像(数学) 生成模型 物理 光学 材料科学 电信 探测器 冶金 热力学
作者
Yunping Zhang,Xihui Liu,Edmund Y. Lam
标识
DOI:10.1117/12.3000660
摘要

Due to the loss of phase information in images captured by intensity-only measurements, the numerical reconstruction of inline digital holographic imaging suffers from the undesirable twin-image artifact. This artifact presents as an out-of-focus conjugate at the virtual image plane and reduces the reconstruction quality. In this work, we propose a diffusion-based generative model that eliminates such defocus noise in single-shot inline digital holography. The diffusion-based generative model learns the implicit prior of the underlying data distribution by progressively injecting random noise in data and then generating high-quality samples by reversing this process. Although the diffusion model has been successful in various challenging tasks in computer vision, its potential in scientific imaging has not been fully explored yet, and one challenge is the inherent randomness in its reverse sampling process. To address this issue, we incorporate the underlying physics of image formation as a prior, which constrains the possible samples from the data distribution. Specifically, we include an extra gradient correction step in each reverse sampling process to introduce data consistency and generate better results. We demonstrate the feasibility of our approach using simulated and experimental holograms and compare our results with previous methods. Our model recovers detailed object information and significantly suppresses the twin-image noise. The proposed method is explainable, generalizable, and transferable to other samples from various distributions, making it a promising tool for digital holographic reconstruction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KatzeBaliey完成签到,获得积分10
刚刚
刚刚
要减肥的晓曼关注了科研通微信公众号
1秒前
SciGPT应助天边外采纳,获得10
1秒前
2秒前
在水一方应助hsbuuwqbdubeq采纳,获得10
3秒前
4秒前
5秒前
丰富的灵枫完成签到,获得积分10
5秒前
花笙给花笙的求助进行了留言
5秒前
5秒前
我是老大应助西子阳采纳,获得10
6秒前
流光完成签到,获得积分10
6秒前
lixm完成签到,获得积分10
6秒前
云影cns完成签到 ,获得积分10
7秒前
叁壹粑粑完成签到,获得积分10
7秒前
nnnnn完成签到,获得积分10
8秒前
8秒前
好学的猪发布了新的文献求助10
8秒前
lixm发布了新的文献求助10
9秒前
9秒前
9秒前
wanci应助Zr97采纳,获得10
10秒前
HB完成签到,获得积分10
11秒前
11秒前
13秒前
13秒前
麦子发布了新的文献求助10
13秒前
好学的猪完成签到,获得积分10
15秒前
吴向宽发布了新的文献求助10
15秒前
16秒前
hsbuuwqbdubeq发布了新的文献求助10
16秒前
lkq完成签到,获得积分20
16秒前
wtc发布了新的文献求助10
18秒前
19秒前
zoujianqiao完成签到 ,获得积分10
19秒前
20秒前
追寻访曼完成签到 ,获得积分10
21秒前
大模型应助西子阳采纳,获得10
22秒前
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998569
求助须知:如何正确求助?哪些是违规求助? 3538078
关于积分的说明 11273314
捐赠科研通 3277023
什么是DOI,文献DOI怎么找? 1807331
邀请新用户注册赠送积分活动 883825
科研通“疑难数据库(出版商)”最低求助积分说明 810070