Single-shot digital holography with improved twin-image noise suppression using a diffusion-based generative model

全息术 弹丸 计算机科学 噪音(视频) 计算机视觉 人工智能 散粒噪声 生成语法 扩散 数字全息术 图像(数学) 生成模型 物理 光学 材料科学 电信 探测器 冶金 热力学
作者
Yunping Zhang,Xihui Liu,Edmund Y. Lam
标识
DOI:10.1117/12.3000660
摘要

Due to the loss of phase information in images captured by intensity-only measurements, the numerical reconstruction of inline digital holographic imaging suffers from the undesirable twin-image artifact. This artifact presents as an out-of-focus conjugate at the virtual image plane and reduces the reconstruction quality. In this work, we propose a diffusion-based generative model that eliminates such defocus noise in single-shot inline digital holography. The diffusion-based generative model learns the implicit prior of the underlying data distribution by progressively injecting random noise in data and then generating high-quality samples by reversing this process. Although the diffusion model has been successful in various challenging tasks in computer vision, its potential in scientific imaging has not been fully explored yet, and one challenge is the inherent randomness in its reverse sampling process. To address this issue, we incorporate the underlying physics of image formation as a prior, which constrains the possible samples from the data distribution. Specifically, we include an extra gradient correction step in each reverse sampling process to introduce data consistency and generate better results. We demonstrate the feasibility of our approach using simulated and experimental holograms and compare our results with previous methods. Our model recovers detailed object information and significantly suppresses the twin-image noise. The proposed method is explainable, generalizable, and transferable to other samples from various distributions, making it a promising tool for digital holographic reconstruction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助拼搏太阳采纳,获得10
刚刚
权翼完成签到,获得积分10
刚刚
努力发布了新的文献求助30
刚刚
1秒前
tianzml0应助WoeL.Aug.11采纳,获得150
1秒前
2秒前
Jackie完成签到,获得积分10
2秒前
123456发布了新的文献求助10
2秒前
ding应助风中的宛白采纳,获得10
2秒前
乐总完成签到,获得积分10
2秒前
故意的访云完成签到,获得积分10
2秒前
17466y完成签到,获得积分10
2秒前
科研通AI5应助ww采纳,获得10
3秒前
科目三应助Maggie_403采纳,获得10
3秒前
3秒前
我要发NATURE完成签到,获得积分10
4秒前
科研通AI6应助妖姬采纳,获得10
4秒前
4秒前
zzzz发布了新的文献求助10
5秒前
火星上夏波完成签到,获得积分10
5秒前
5秒前
5秒前
Daurzr发布了新的文献求助10
5秒前
风中的青完成签到,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
852应助cyd采纳,获得10
7秒前
7秒前
七腿儿猫完成签到,获得积分10
7秒前
卢曹宇完成签到,获得积分10
7秒前
小马甲应助xinxin采纳,获得10
8秒前
Min应助猪猪侠采纳,获得10
8秒前
知性的以筠完成签到 ,获得积分10
9秒前
9秒前
xwb发布了新的文献求助10
9秒前
Chaiyuan完成签到 ,获得积分10
10秒前
进击的研狗完成签到 ,获得积分10
10秒前
迟暮完成签到 ,获得积分10
11秒前
科研通AI6应助lbw采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4615619
求助须知:如何正确求助?哪些是违规求助? 4019269
关于积分的说明 12441658
捐赠科研通 3702297
什么是DOI,文献DOI怎么找? 2041522
邀请新用户注册赠送积分活动 1074192
科研通“疑难数据库(出版商)”最低求助积分说明 957826