Single-shot digital holography with improved twin-image noise suppression using a diffusion-based generative model

全息术 弹丸 计算机科学 噪音(视频) 计算机视觉 人工智能 散粒噪声 生成语法 扩散 数字全息术 图像(数学) 生成模型 物理 光学 材料科学 电信 热力学 探测器 冶金
作者
Yunping Zhang,Xihui Liu,Edmund Y. Lam
标识
DOI:10.1117/12.3000660
摘要

Due to the loss of phase information in images captured by intensity-only measurements, the numerical reconstruction of inline digital holographic imaging suffers from the undesirable twin-image artifact. This artifact presents as an out-of-focus conjugate at the virtual image plane and reduces the reconstruction quality. In this work, we propose a diffusion-based generative model that eliminates such defocus noise in single-shot inline digital holography. The diffusion-based generative model learns the implicit prior of the underlying data distribution by progressively injecting random noise in data and then generating high-quality samples by reversing this process. Although the diffusion model has been successful in various challenging tasks in computer vision, its potential in scientific imaging has not been fully explored yet, and one challenge is the inherent randomness in its reverse sampling process. To address this issue, we incorporate the underlying physics of image formation as a prior, which constrains the possible samples from the data distribution. Specifically, we include an extra gradient correction step in each reverse sampling process to introduce data consistency and generate better results. We demonstrate the feasibility of our approach using simulated and experimental holograms and compare our results with previous methods. Our model recovers detailed object information and significantly suppresses the twin-image noise. The proposed method is explainable, generalizable, and transferable to other samples from various distributions, making it a promising tool for digital holographic reconstruction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ddsyg126发布了新的文献求助50
1秒前
Eason完成签到,获得积分10
1秒前
3秒前
5秒前
5秒前
小楠完成签到,获得积分10
7秒前
FashionBoy应助个性的饼干采纳,获得10
7秒前
9秒前
旅途之人发布了新的文献求助10
9秒前
哈哈哈发布了新的文献求助10
10秒前
12秒前
KongLG完成签到 ,获得积分10
13秒前
14秒前
七慕凉发布了新的文献求助10
14秒前
17秒前
旅途之人完成签到,获得积分20
17秒前
17秒前
激情的宛白完成签到,获得积分10
18秒前
咚咚发布了新的文献求助10
18秒前
zqq关注了科研通微信公众号
19秒前
彭于晏应助一别如斯采纳,获得10
20秒前
22秒前
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
Jasper应助科研通管家采纳,获得10
25秒前
MoonFlows应助科研通管家采纳,获得20
25秒前
小蘑菇应助科研通管家采纳,获得10
25秒前
充电宝应助科研通管家采纳,获得10
25秒前
爆米花应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
27秒前
Guoqiang发布了新的文献求助10
28秒前
29秒前
大观天下发布了新的文献求助10
29秒前
31秒前
西伯侯发布了新的文献求助10
31秒前
31秒前
lcc发布了新的文献求助10
32秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164126
求助须知:如何正确求助?哪些是违规求助? 2814873
关于积分的说明 7906837
捐赠科研通 2474446
什么是DOI,文献DOI怎么找? 1317493
科研通“疑难数据库(出版商)”最低求助积分说明 631818
版权声明 602228