Single-shot digital holography with improved twin-image noise suppression using a diffusion-based generative model

全息术 计算机科学 噪音(视频) 计算机视觉 人工智能 工件(错误) 生成语法 采样(信号处理) 图像质量 数字全息术 光学(聚焦) 图像(数学) 各项异性扩散 迭代重建 生成模型 物理 光学 滤波器(信号处理)
作者
Yunping Zhang,Xihui Liu,Edmund Y. Lam
标识
DOI:10.1117/12.3000660
摘要

Due to the loss of phase information in images captured by intensity-only measurements, the numerical reconstruction of inline digital holographic imaging suffers from the undesirable twin-image artifact. This artifact presents as an out-of-focus conjugate at the virtual image plane and reduces the reconstruction quality. In this work, we propose a diffusion-based generative model that eliminates such defocus noise in single-shot inline digital holography. The diffusion-based generative model learns the implicit prior of the underlying data distribution by progressively injecting random noise in data and then generating high-quality samples by reversing this process. Although the diffusion model has been successful in various challenging tasks in computer vision, its potential in scientific imaging has not been fully explored yet, and one challenge is the inherent randomness in its reverse sampling process. To address this issue, we incorporate the underlying physics of image formation as a prior, which constrains the possible samples from the data distribution. Specifically, we include an extra gradient correction step in each reverse sampling process to introduce data consistency and generate better results. We demonstrate the feasibility of our approach using simulated and experimental holograms and compare our results with previous methods. Our model recovers detailed object information and significantly suppresses the twin-image noise. The proposed method is explainable, generalizable, and transferable to other samples from various distributions, making it a promising tool for digital holographic reconstruction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yang发布了新的文献求助10
刚刚
asipilin完成签到,获得积分10
1秒前
传奇3应助111采纳,获得10
1秒前
CipherSage应助lingo采纳,获得10
1秒前
aaaaaYue发布了新的文献求助10
2秒前
曾经的清炎关注了科研通微信公众号
2秒前
南山完成签到,获得积分10
3秒前
3秒前
剥皮巧克力完成签到,获得积分10
4秒前
4秒前
谦谦发布了新的文献求助50
4秒前
WaNgZY完成签到,获得积分10
4秒前
gloval完成签到,获得积分10
6秒前
6秒前
虚幻谷波发布了新的文献求助10
6秒前
火辣蛤蟆完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
完美世界应助白日焰火采纳,获得10
9秒前
10秒前
冥王星发布了新的文献求助10
10秒前
脑洞疼应助木子采纳,获得10
10秒前
11秒前
科研通AI6应助没所谓采纳,获得10
11秒前
XNF发布了新的文献求助10
12秒前
12秒前
13秒前
14秒前
杭苑博完成签到,获得积分10
14秒前
hexinxin发布了新的文献求助10
14秒前
zhuwei发布了新的文献求助10
15秒前
木辛发布了新的文献求助10
15秒前
小蘑菇应助我爱乒乓球采纳,获得10
15秒前
Liu920302发布了新的文献求助10
16秒前
17秒前
隐形曼青应助小林不熬夜采纳,获得10
17秒前
minmin完成签到,获得积分20
18秒前
18秒前
虚幻谷波完成签到,获得积分10
18秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442780
求助须知:如何正确求助?哪些是违规求助? 4552892
关于积分的说明 14239536
捐赠科研通 4474264
什么是DOI,文献DOI怎么找? 2451974
邀请新用户注册赠送积分活动 1442887
关于科研通互助平台的介绍 1418632