Single-shot digital holography with improved twin-image noise suppression using a diffusion-based generative model

全息术 计算机科学 噪音(视频) 计算机视觉 人工智能 工件(错误) 生成语法 采样(信号处理) 图像质量 数字全息术 光学(聚焦) 图像(数学) 各项异性扩散 迭代重建 生成模型 物理 光学 滤波器(信号处理)
作者
Yunping Zhang,Xihui Liu,Edmund Y. Lam
标识
DOI:10.1117/12.3000660
摘要

Due to the loss of phase information in images captured by intensity-only measurements, the numerical reconstruction of inline digital holographic imaging suffers from the undesirable twin-image artifact. This artifact presents as an out-of-focus conjugate at the virtual image plane and reduces the reconstruction quality. In this work, we propose a diffusion-based generative model that eliminates such defocus noise in single-shot inline digital holography. The diffusion-based generative model learns the implicit prior of the underlying data distribution by progressively injecting random noise in data and then generating high-quality samples by reversing this process. Although the diffusion model has been successful in various challenging tasks in computer vision, its potential in scientific imaging has not been fully explored yet, and one challenge is the inherent randomness in its reverse sampling process. To address this issue, we incorporate the underlying physics of image formation as a prior, which constrains the possible samples from the data distribution. Specifically, we include an extra gradient correction step in each reverse sampling process to introduce data consistency and generate better results. We demonstrate the feasibility of our approach using simulated and experimental holograms and compare our results with previous methods. Our model recovers detailed object information and significantly suppresses the twin-image noise. The proposed method is explainable, generalizable, and transferable to other samples from various distributions, making it a promising tool for digital holographic reconstruction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Iridesent0v0发布了新的文献求助10
刚刚
123完成签到 ,获得积分10
1秒前
1秒前
娃娃菜妮发布了新的文献求助10
2秒前
米诺团子发布了新的文献求助10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
清新完成签到,获得积分10
4秒前
hfzxlzy发布了新的文献求助10
6秒前
CC完成签到 ,获得积分10
7秒前
7秒前
kezhang完成签到,获得积分10
8秒前
8秒前
吕小布发布了新的文献求助10
9秒前
10秒前
10秒前
娃娃菜妮完成签到,获得积分10
10秒前
万万没想到完成签到,获得积分10
11秒前
11秒前
搜集达人应助hd采纳,获得10
12秒前
赘婿应助丢丢银采纳,获得10
12秒前
12秒前
科研人才完成签到 ,获得积分10
14秒前
风清扬应助可爱的老司机采纳,获得30
15秒前
清新的苑博完成签到,获得积分10
15秒前
CYQ发布了新的文献求助10
15秒前
慕青应助嘻嘻采纳,获得10
16秒前
复杂的薯片完成签到,获得积分10
17秒前
CipherSage应助曹小妍采纳,获得10
17秒前
19秒前
Cisplatin发布了新的文献求助10
20秒前
Yin完成签到,获得积分10
21秒前
23秒前
充电宝应助belly采纳,获得10
23秒前
23秒前
23秒前
朱颜发布了新的文献求助10
24秒前
狗子哥完成签到,获得积分10
24秒前
Hello应助kenna123采纳,获得10
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458527
求助须知:如何正确求助?哪些是违规求助? 4564580
关于积分的说明 14295592
捐赠科研通 4489446
什么是DOI,文献DOI怎么找? 2459080
邀请新用户注册赠送积分活动 1448864
关于科研通互助平台的介绍 1424474