Single-shot digital holography with improved twin-image noise suppression using a diffusion-based generative model

全息术 计算机科学 噪音(视频) 计算机视觉 人工智能 工件(错误) 生成语法 采样(信号处理) 图像质量 数字全息术 光学(聚焦) 图像(数学) 各项异性扩散 迭代重建 生成模型 物理 光学 滤波器(信号处理)
作者
Yunping Zhang,Xihui Liu,Edmund Y. Lam
标识
DOI:10.1117/12.3000660
摘要

Due to the loss of phase information in images captured by intensity-only measurements, the numerical reconstruction of inline digital holographic imaging suffers from the undesirable twin-image artifact. This artifact presents as an out-of-focus conjugate at the virtual image plane and reduces the reconstruction quality. In this work, we propose a diffusion-based generative model that eliminates such defocus noise in single-shot inline digital holography. The diffusion-based generative model learns the implicit prior of the underlying data distribution by progressively injecting random noise in data and then generating high-quality samples by reversing this process. Although the diffusion model has been successful in various challenging tasks in computer vision, its potential in scientific imaging has not been fully explored yet, and one challenge is the inherent randomness in its reverse sampling process. To address this issue, we incorporate the underlying physics of image formation as a prior, which constrains the possible samples from the data distribution. Specifically, we include an extra gradient correction step in each reverse sampling process to introduce data consistency and generate better results. We demonstrate the feasibility of our approach using simulated and experimental holograms and compare our results with previous methods. Our model recovers detailed object information and significantly suppresses the twin-image noise. The proposed method is explainable, generalizable, and transferable to other samples from various distributions, making it a promising tool for digital holographic reconstruction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助miemie采纳,获得10
刚刚
phhh发布了新的文献求助10
刚刚
1秒前
caltrate515完成签到,获得积分10
1秒前
1秒前
坦率灵槐发布了新的文献求助10
1秒前
2秒前
2秒前
Roin完成签到,获得积分10
2秒前
2秒前
Ww发布了新的文献求助10
3秒前
小洪俊熙发布了新的文献求助10
3秒前
陌欣冉完成签到 ,获得积分10
5秒前
keke发布了新的文献求助10
5秒前
7秒前
7秒前
Hbobo发布了新的文献求助10
8秒前
NBS完成签到,获得积分10
8秒前
8秒前
领导范儿应助歪比八卜采纳,获得10
9秒前
lulumomoxixi完成签到,获得积分10
9秒前
Eusha完成签到,获得积分10
9秒前
Ww完成签到,获得积分20
9秒前
apathy完成签到,获得积分10
10秒前
宗剑发布了新的文献求助10
10秒前
kai完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
liangyx发布了新的文献求助10
11秒前
活泼蜜蜂完成签到,获得积分10
11秒前
湘湘完成签到,获得积分10
12秒前
13秒前
hongxuezhi发布了新的文献求助10
13秒前
14秒前
林圆涛完成签到,获得积分10
14秒前
cyn0762完成签到,获得积分10
16秒前
phhh完成签到,获得积分10
17秒前
17秒前
可知发布了新的文献求助10
18秒前
英勇靖雁发布了新的文献求助10
19秒前
科目三应助正义采纳,获得10
19秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5131642
求助须知:如何正确求助?哪些是违规求助? 4333372
关于积分的说明 13500477
捐赠科研通 4170310
什么是DOI,文献DOI怎么找? 2286231
邀请新用户注册赠送积分活动 1287130
关于科研通互助平台的介绍 1228164