Prerequisite-Enhanced Category-Aware Graph Neural Networks for Course Recommendation

课程(导航) 计算机科学 图形 人工智能 人工神经网络 机器学习 理论计算机科学 数据科学 工程类 航空航天工程
作者
Jianshan Sun,Suyuan Mei,Kun Yuan,Yuanchun Jiang,Jie Cao
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:18 (5): 1-21
标识
DOI:10.1145/3643644
摘要

The rapid development of Massive Open Online Courses (MOOCs) platforms has created an urgent need for an efficient personalized course recommender system that can assist learners of all backgrounds and levels of knowledge in selecting appropriate courses. Currently, most existing methods utilize a sequential recommendation paradigm that captures the user’s learning interests from their learning history, typically through recurrent or graph neural networks. However, fewer studies have explored how to incorporate principles of human learning at both the course and category levels to enhance course recommendations. In this article, we aim at addressing this gap by introducing a novel model, named Prerequisite-Enhanced Catory-Aware Graph Neural Network (PCGNN), for course recommendation. Specifically, we first construct a course prerequisite graph that reflects the human learning principles and further pre-train the course prerequisite relationships as the base embeddings for courses and categories. Then, to capture the user’s complex learning patterns, we build an item graph and a category graph from the user’s historical learning records, respectively: (1) the item graph reflects the course-level local learning transition patterns and (2) the category graph provides insight into the user’s long-term learning interest. Correspondingly, we propose a user interest encoder that employs a gated graph neural network to learn the course-level user interest embedding and design a category transition pattern encoder that utilizes GRU to yield the category-level user interest embedding. Finally, the two fine-grained user interest embeddings are fused to achieve precise course prediction. Extensive experiments on two real-world datasets demonstrate the effectiveness of PCGNN compared with other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诸葛雪兰发布了新的文献求助10
刚刚
1秒前
CC完成签到,获得积分10
1秒前
wanci应助gaos采纳,获得10
1秒前
顾矜应助四火采纳,获得10
1秒前
人福药业发布了新的文献求助30
1秒前
liuguohua126发布了新的文献求助10
2秒前
分子遗传小菜鸟完成签到,获得积分10
2秒前
洛尚发布了新的文献求助10
2秒前
英俊的铭应助咳咳采纳,获得10
3秒前
科研通AI2S应助嗯呢采纳,获得10
3秒前
姆姆发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
11发布了新的文献求助10
6秒前
大个应助limof采纳,获得10
6秒前
7秒前
竹筏过海应助chen采纳,获得50
8秒前
8秒前
schoolboy发布了新的文献求助10
8秒前
完美世界应助洛尚采纳,获得10
8秒前
苹果萧发布了新的文献求助10
9秒前
钟是一梦发布了新的文献求助10
10秒前
Lucas应助Light采纳,获得10
11秒前
11秒前
11秒前
李健的粉丝团团长应助Ll采纳,获得10
11秒前
11秒前
JQKing完成签到,获得积分10
12秒前
12秒前
zs完成签到 ,获得积分10
12秒前
12秒前
11完成签到,获得积分20
12秒前
一定会更好的完成签到,获得积分10
13秒前
Pangsj发布了新的文献求助10
13秒前
姆姆完成签到,获得积分10
13秒前
领导范儿应助落晨采纳,获得10
13秒前
14秒前
善良的安卉完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740