Prerequisite-Enhanced Category-Aware Graph Neural Networks for Course Recommendation

课程(导航) 计算机科学 图形 人工智能 人工神经网络 机器学习 理论计算机科学 数据科学 工程类 航空航天工程
作者
Jianshan Sun,Suyuan Mei,Kun Yuan,Yuanchun Jiang,Jie Cao
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:18 (5): 1-21
标识
DOI:10.1145/3643644
摘要

The rapid development of Massive Open Online Courses (MOOCs) platforms has created an urgent need for an efficient personalized course recommender system that can assist learners of all backgrounds and levels of knowledge in selecting appropriate courses. Currently, most existing methods utilize a sequential recommendation paradigm that captures the user’s learning interests from their learning history, typically through recurrent or graph neural networks. However, fewer studies have explored how to incorporate principles of human learning at both the course and category levels to enhance course recommendations. In this article, we aim at addressing this gap by introducing a novel model, named Prerequisite-Enhanced Catory-Aware Graph Neural Network (PCGNN), for course recommendation. Specifically, we first construct a course prerequisite graph that reflects the human learning principles and further pre-train the course prerequisite relationships as the base embeddings for courses and categories. Then, to capture the user’s complex learning patterns, we build an item graph and a category graph from the user’s historical learning records, respectively: (1) the item graph reflects the course-level local learning transition patterns and (2) the category graph provides insight into the user’s long-term learning interest. Correspondingly, we propose a user interest encoder that employs a gated graph neural network to learn the course-level user interest embedding and design a category transition pattern encoder that utilizes GRU to yield the category-level user interest embedding. Finally, the two fine-grained user interest embeddings are fused to achieve precise course prediction. Extensive experiments on two real-world datasets demonstrate the effectiveness of PCGNN compared with other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hy完成签到,获得积分10
1秒前
李爱国应助Rencc采纳,获得10
1秒前
supertkeb完成签到,获得积分10
1秒前
zhangling发布了新的文献求助10
1秒前
1秒前
刘佳婷发布了新的文献求助10
2秒前
abcdefg完成签到,获得积分10
2秒前
田様应助lunar采纳,获得10
2秒前
上山打老虎完成签到,获得积分10
3秒前
3秒前
3秒前
xiaozhao发布了新的文献求助10
4秒前
科研通AI2S应助科研小白采纳,获得10
6秒前
NexusExplorer应助sjc采纳,获得10
7秒前
杨晓白发布了新的文献求助10
7秒前
ad完成签到,获得积分10
7秒前
天天快乐应助真君山山长采纳,获得10
9秒前
Jasper应助程程采纳,获得10
9秒前
句号发布了新的文献求助30
9秒前
小杜小杜发布了新的文献求助10
9秒前
James完成签到,获得积分10
9秒前
10秒前
10秒前
SciGPT应助尊敬惜萍采纳,获得10
11秒前
李健的小迷弟应助郎治宇采纳,获得10
12秒前
12秒前
FashionBoy应助Helio采纳,获得10
13秒前
时来运转完成签到 ,获得积分10
14秒前
14秒前
香蕉觅云应助白衣修身采纳,获得10
14秒前
15秒前
c程序语言发布了新的文献求助10
15秒前
17秒前
18秒前
不懈奋进应助蔚蓝夜之形采纳,获得30
18秒前
麋鹿完成签到 ,获得积分10
18秒前
19秒前
zhangling完成签到,获得积分10
19秒前
20秒前
费列罗LLL完成签到,获得积分10
20秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160420
求助须知:如何正确求助?哪些是违规求助? 2811548
关于积分的说明 7892779
捐赠科研通 2470529
什么是DOI,文献DOI怎么找? 1315616
科研通“疑难数据库(出版商)”最低求助积分说明 630884
版权声明 602042