亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prerequisite-Enhanced Category-Aware Graph Neural Networks for Course Recommendation

计算机科学 推荐系统 嵌入 图形 人工智能 深度学习 人工神经网络 机器学习 理论计算机科学
作者
Jianshan Sun,Suyuan Mei,Kun Yuan,Yuanchun Jiang,Jie Cao
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:18 (5): 1-21 被引量:5
标识
DOI:10.1145/3643644
摘要

The rapid development of Massive Open Online Courses (MOOCs) platforms has created an urgent need for an efficient personalized course recommender system that can assist learners of all backgrounds and levels of knowledge in selecting appropriate courses. Currently, most existing methods utilize a sequential recommendation paradigm that captures the user’s learning interests from their learning history, typically through recurrent or graph neural networks. However, fewer studies have explored how to incorporate principles of human learning at both the course and category levels to enhance course recommendations. In this article, we aim at addressing this gap by introducing a novel model, named Prerequisite-Enhanced Catory-Aware Graph Neural Network (PCGNN), for course recommendation. Specifically, we first construct a course prerequisite graph that reflects the human learning principles and further pre-train the course prerequisite relationships as the base embeddings for courses and categories. Then, to capture the user’s complex learning patterns, we build an item graph and a category graph from the user’s historical learning records, respectively: (1) the item graph reflects the course-level local learning transition patterns and (2) the category graph provides insight into the user’s long-term learning interest. Correspondingly, we propose a user interest encoder that employs a gated graph neural network to learn the course-level user interest embedding and design a category transition pattern encoder that utilizes GRU to yield the category-level user interest embedding. Finally, the two fine-grained user interest embeddings are fused to achieve precise course prediction. Extensive experiments on two real-world datasets demonstrate the effectiveness of PCGNN compared with other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
冒险寻羊完成签到,获得积分10
25秒前
51秒前
lixiaorui发布了新的文献求助10
56秒前
1分钟前
1分钟前
1分钟前
宅心仁厚完成签到 ,获得积分10
1分钟前
1分钟前
天天完成签到 ,获得积分10
1分钟前
1分钟前
灰色白面鸮完成签到,获得积分10
1分钟前
2分钟前
2分钟前
yqt完成签到,获得积分10
2分钟前
lixiaorui发布了新的文献求助10
2分钟前
2分钟前
哈哈发布了新的文献求助10
2分钟前
2分钟前
orixero应助油柑美式采纳,获得10
2分钟前
2分钟前
2分钟前
油柑美式发布了新的文献求助10
2分钟前
2分钟前
哈哈完成签到,获得积分10
2分钟前
2分钟前
希望天下0贩的0应助123456采纳,获得10
2分钟前
RONG完成签到 ,获得积分10
2分钟前
3分钟前
www完成签到,获得积分10
3分钟前
123456发布了新的文献求助10
3分钟前
李健的小迷弟应助jarrettee采纳,获得10
3分钟前
3分钟前
3分钟前
TXZ06完成签到,获得积分10
3分钟前
山猪吃细糠完成签到 ,获得积分10
4分钟前
4分钟前
杨怀托发布了新的文献求助30
4分钟前
4分钟前
狂野吐司完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5254139
求助须知:如何正确求助?哪些是违规求助? 4417202
关于积分的说明 13751065
捐赠科研通 4289797
什么是DOI,文献DOI怎么找? 2353745
邀请新用户注册赠送积分活动 1350442
关于科研通互助平台的介绍 1310479