亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prerequisite-Enhanced Category-Aware Graph Neural Networks for Course Recommendation

计算机科学 推荐系统 嵌入 图形 人工智能 深度学习 人工神经网络 机器学习 理论计算机科学
作者
Jianshan Sun,Suyuan Mei,Kun Yuan,Yuanchun Jiang,Jie Cao
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:18 (5): 1-21 被引量:5
标识
DOI:10.1145/3643644
摘要

The rapid development of Massive Open Online Courses (MOOCs) platforms has created an urgent need for an efficient personalized course recommender system that can assist learners of all backgrounds and levels of knowledge in selecting appropriate courses. Currently, most existing methods utilize a sequential recommendation paradigm that captures the user’s learning interests from their learning history, typically through recurrent or graph neural networks. However, fewer studies have explored how to incorporate principles of human learning at both the course and category levels to enhance course recommendations. In this article, we aim at addressing this gap by introducing a novel model, named Prerequisite-Enhanced Catory-Aware Graph Neural Network (PCGNN), for course recommendation. Specifically, we first construct a course prerequisite graph that reflects the human learning principles and further pre-train the course prerequisite relationships as the base embeddings for courses and categories. Then, to capture the user’s complex learning patterns, we build an item graph and a category graph from the user’s historical learning records, respectively: (1) the item graph reflects the course-level local learning transition patterns and (2) the category graph provides insight into the user’s long-term learning interest. Correspondingly, we propose a user interest encoder that employs a gated graph neural network to learn the course-level user interest embedding and design a category transition pattern encoder that utilizes GRU to yield the category-level user interest embedding. Finally, the two fine-grained user interest embeddings are fused to achieve precise course prediction. Extensive experiments on two real-world datasets demonstrate the effectiveness of PCGNN compared with other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
小泽发布了新的文献求助30
16秒前
17秒前
17秒前
35秒前
36秒前
37秒前
37秒前
ying818k发布了新的文献求助10
40秒前
moxiang发布了新的文献求助10
44秒前
andrele发布了新的文献求助10
56秒前
浮游应助科研通管家采纳,获得10
59秒前
59秒前
852应助科研通管家采纳,获得10
59秒前
浮游应助科研通管家采纳,获得10
59秒前
浮游应助科研通管家采纳,获得10
59秒前
无花果应助科研通管家采纳,获得10
59秒前
酷波er应助科研通管家采纳,获得10
59秒前
浮游应助科研通管家采纳,获得10
59秒前
在水一方应助科研通管家采纳,获得10
59秒前
Owen应助科研通管家采纳,获得10
59秒前
大模型应助科研通管家采纳,获得10
1分钟前
1分钟前
刘海清发布了新的文献求助10
1分钟前
1分钟前
Ccz发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1793480753发布了新的文献求助10
1分钟前
南方完成签到 ,获得积分10
2分钟前
2分钟前
合适的初蓝完成签到 ,获得积分10
2分钟前
moxiang完成签到,获得积分10
2分钟前
尼古拉斯铁柱完成签到 ,获得积分10
2分钟前
Weiyu完成签到 ,获得积分10
2分钟前
2分钟前
1793480753完成签到,获得积分10
2分钟前
2分钟前
Yuang完成签到 ,获得积分10
2分钟前
Sherry完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482258
求助须知:如何正确求助?哪些是违规求助? 4583190
关于积分的说明 14388800
捐赠科研通 4512190
什么是DOI,文献DOI怎么找? 2472722
邀请新用户注册赠送积分活动 1458988
关于科研通互助平台的介绍 1432375