亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prerequisite-Enhanced Category-Aware Graph Neural Networks for Course Recommendation

计算机科学 推荐系统 嵌入 图形 人工智能 深度学习 人工神经网络 机器学习 理论计算机科学
作者
Jianshan Sun,Suyuan Mei,Kun Yuan,Yuanchun Jiang,Jie Cao
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:18 (5): 1-21 被引量:5
标识
DOI:10.1145/3643644
摘要

The rapid development of Massive Open Online Courses (MOOCs) platforms has created an urgent need for an efficient personalized course recommender system that can assist learners of all backgrounds and levels of knowledge in selecting appropriate courses. Currently, most existing methods utilize a sequential recommendation paradigm that captures the user’s learning interests from their learning history, typically through recurrent or graph neural networks. However, fewer studies have explored how to incorporate principles of human learning at both the course and category levels to enhance course recommendations. In this article, we aim at addressing this gap by introducing a novel model, named Prerequisite-Enhanced Catory-Aware Graph Neural Network (PCGNN), for course recommendation. Specifically, we first construct a course prerequisite graph that reflects the human learning principles and further pre-train the course prerequisite relationships as the base embeddings for courses and categories. Then, to capture the user’s complex learning patterns, we build an item graph and a category graph from the user’s historical learning records, respectively: (1) the item graph reflects the course-level local learning transition patterns and (2) the category graph provides insight into the user’s long-term learning interest. Correspondingly, we propose a user interest encoder that employs a gated graph neural network to learn the course-level user interest embedding and design a category transition pattern encoder that utilizes GRU to yield the category-level user interest embedding. Finally, the two fine-grained user interest embeddings are fused to achieve precise course prediction. Extensive experiments on two real-world datasets demonstrate the effectiveness of PCGNN compared with other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fffffggggggllll完成签到 ,获得积分10
4秒前
树洞发布了新的文献求助10
7秒前
余念安完成签到 ,获得积分10
13秒前
NexusExplorer应助wop111采纳,获得10
14秒前
17秒前
xzy998应助有志不在年糕采纳,获得10
28秒前
树洞发布了新的文献求助10
42秒前
冉亦完成签到,获得积分10
44秒前
zqq完成签到,获得积分0
56秒前
上官若男应助树洞采纳,获得10
57秒前
WUHUIWEN完成签到,获得积分10
1分钟前
田様应助欢喜的怜菡采纳,获得10
1分钟前
1分钟前
melo发布了新的文献求助10
1分钟前
1分钟前
1分钟前
田一贞发布了新的文献求助10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
苏震坤发布了新的文献求助10
2分钟前
勤奋向真完成签到,获得积分10
2分钟前
Jasper应助可靠的寒风采纳,获得10
2分钟前
2分钟前
华仔应助kaka采纳,获得30
2分钟前
树洞发布了新的文献求助10
2分钟前
喜悦的小土豆完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
Becky完成签到 ,获得积分10
3分钟前
wop111发布了新的文献求助10
3分钟前
曾经的丹彤完成签到,获得积分10
3分钟前
ZhaohuaXie应助悠悠悠幽谷采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
杜杜桃子发布了新的文献求助10
3分钟前
香蕉觅云应助wop111采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4926243
求助须知:如何正确求助?哪些是违规求助? 4196155
关于积分的说明 13031961
捐赠科研通 3968095
什么是DOI,文献DOI怎么找? 2174838
邀请新用户注册赠送积分活动 1192015
关于科研通互助平台的介绍 1102136