Traffic accident severity prediction with ensemble learning methods

集成学习 交通事故 事故(哲学) 计算机科学 人工智能 工程类 法律工程学 哲学 认识论
作者
Süleyman Çeven,Ahmet Albayrak
出处
期刊:Computers & Electrical Engineering [Elsevier]
卷期号:114: 109101-109101 被引量:10
标识
DOI:10.1016/j.compeleceng.2024.109101
摘要

In this study, decision tree-based models are proposed for classification of traffic accident severity. Traffic accident severity is classified into three categories. The data set used in the study belongs to the province of Kayseri, Turkey. The data consists of urban traffic accident reports (23074 accidents) between 2013 and 2021. There are 39 variables in the data set. As a result of data preprocessing, 15 variables that are meaningful and can be used for the model in the data set were determined. Since the input variables of the model mainly contain categorical data, they were coded with pseudo-coding and a total of 93 input variables were obtained. In the studies, ensemble learning methods such as Random Forest, AdaBoost and MLP methods were used. F1 scores of these methods were found to be 91.72%, 91.27% and 88.95%, respectively. Feature importance levels were calculated for 15 variables used in the model. Gini index and decision trees were used while calculating the importance of the features. Driver fault (0.64) was found to have the most effect on traffic accident severity. This study focuses especially on urban traffic accidents. Urban traffic is crowded in terms of both vehicles and pedestrians. As a result of this, according to the findings obtained in this study, traffic accidents occurred mostly at the intersections with crowded urban areas.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助zik采纳,获得10
1秒前
2秒前
3秒前
银玥发布了新的文献求助10
4秒前
酸菜完成签到,获得积分10
4秒前
4秒前
Gun2022完成签到,获得积分10
4秒前
椰子发布了新的文献求助10
5秒前
大黄发布了新的文献求助10
5秒前
充电宝应助如意蚂蚁采纳,获得10
5秒前
kkk发布了新的文献求助20
5秒前
科研通AI6应助hhhg采纳,获得20
5秒前
fanfan完成签到,获得积分10
6秒前
zgl0806发布了新的文献求助10
7秒前
7秒前
yema完成签到,获得积分10
7秒前
酸菜发布了新的文献求助10
7秒前
烟花应助Ch_7采纳,获得10
7秒前
陆小果发布了新的文献求助10
7秒前
小崔完成签到,获得积分20
8秒前
8秒前
8秒前
8秒前
8秒前
旺仔发发完成签到,获得积分20
9秒前
哗啦地一声完成签到,获得积分20
9秒前
9秒前
10秒前
Jaden完成签到,获得积分10
10秒前
随风发布了新的文献求助10
10秒前
11秒前
有机者发布了新的文献求助10
11秒前
11秒前
hala发布了新的文献求助10
11秒前
12秒前
77发布了新的文献求助10
12秒前
13秒前
少年完成签到,获得积分10
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589658
求助须知:如何正确求助?哪些是违规求助? 4674292
关于积分的说明 14792969
捐赠科研通 4628917
什么是DOI,文献DOI怎么找? 2532363
邀请新用户注册赠送积分活动 1501031
关于科研通互助平台的介绍 1468487