Traffic accident severity prediction with ensemble learning methods

集成学习 交通事故 事故(哲学) 计算机科学 人工智能 工程类 法律工程学 认识论 哲学
作者
Süleyman Çeven,Ahmet Albayrak
出处
期刊:Computers & Electrical Engineering [Elsevier]
卷期号:114: 109101-109101 被引量:10
标识
DOI:10.1016/j.compeleceng.2024.109101
摘要

In this study, decision tree-based models are proposed for classification of traffic accident severity. Traffic accident severity is classified into three categories. The data set used in the study belongs to the province of Kayseri, Turkey. The data consists of urban traffic accident reports (23074 accidents) between 2013 and 2021. There are 39 variables in the data set. As a result of data preprocessing, 15 variables that are meaningful and can be used for the model in the data set were determined. Since the input variables of the model mainly contain categorical data, they were coded with pseudo-coding and a total of 93 input variables were obtained. In the studies, ensemble learning methods such as Random Forest, AdaBoost and MLP methods were used. F1 scores of these methods were found to be 91.72%, 91.27% and 88.95%, respectively. Feature importance levels were calculated for 15 variables used in the model. Gini index and decision trees were used while calculating the importance of the features. Driver fault (0.64) was found to have the most effect on traffic accident severity. This study focuses especially on urban traffic accidents. Urban traffic is crowded in terms of both vehicles and pedestrians. As a result of this, according to the findings obtained in this study, traffic accidents occurred mostly at the intersections with crowded urban areas.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Ky_Mac应助科研通管家采纳,获得30
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
Ky_Mac应助科研通管家采纳,获得30
4秒前
yfn应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
yfn应助科研通管家采纳,获得10
4秒前
无极微光应助科研通管家采纳,获得20
4秒前
mo发布了新的文献求助10
4秒前
Sanma应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
Sanma应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得30
4秒前
丘比特应助科研通管家采纳,获得30
4秒前
wanci应助科研通管家采纳,获得10
4秒前
欣欣发布了新的文献求助10
4秒前
Ky_Mac应助科研通管家采纳,获得30
4秒前
wanci应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
Ky_Mac应助科研通管家采纳,获得30
4秒前
JamesPei应助科研通管家采纳,获得10
5秒前
dangdang应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
dangdang应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
Maestro_S应助keyan采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得30
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
玄风应助su采纳,获得10
5秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742835
求助须知:如何正确求助?哪些是违规求助? 5410665
关于积分的说明 15345946
捐赠科研通 4883896
什么是DOI,文献DOI怎么找? 2625419
邀请新用户注册赠送积分活动 1574229
关于科研通互助平台的介绍 1531192