Traffic accident severity prediction with ensemble learning methods

集成学习 交通事故 事故(哲学) 计算机科学 人工智能 工程类 法律工程学 哲学 认识论
作者
Süleyman Çeven,Ahmet Albayrak
出处
期刊:Computers & Electrical Engineering [Elsevier BV]
卷期号:114: 109101-109101 被引量:10
标识
DOI:10.1016/j.compeleceng.2024.109101
摘要

In this study, decision tree-based models are proposed for classification of traffic accident severity. Traffic accident severity is classified into three categories. The data set used in the study belongs to the province of Kayseri, Turkey. The data consists of urban traffic accident reports (23074 accidents) between 2013 and 2021. There are 39 variables in the data set. As a result of data preprocessing, 15 variables that are meaningful and can be used for the model in the data set were determined. Since the input variables of the model mainly contain categorical data, they were coded with pseudo-coding and a total of 93 input variables were obtained. In the studies, ensemble learning methods such as Random Forest, AdaBoost and MLP methods were used. F1 scores of these methods were found to be 91.72%, 91.27% and 88.95%, respectively. Feature importance levels were calculated for 15 variables used in the model. Gini index and decision trees were used while calculating the importance of the features. Driver fault (0.64) was found to have the most effect on traffic accident severity. This study focuses especially on urban traffic accidents. Urban traffic is crowded in terms of both vehicles and pedestrians. As a result of this, according to the findings obtained in this study, traffic accidents occurred mostly at the intersections with crowded urban areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汤思睿完成签到 ,获得积分10
1秒前
silsotiscolor完成签到,获得积分10
1秒前
华仔应助言言言言采纳,获得10
2秒前
2秒前
3秒前
小刘一定能读C9博完成签到 ,获得积分10
3秒前
一一完成签到,获得积分10
4秒前
我再也不闹着去叔叔阿姨家吃饭了完成签到 ,获得积分10
7秒前
等待寄云发布了新的文献求助10
7秒前
青堤完成签到,获得积分10
8秒前
9秒前
dwx0529完成签到,获得积分10
9秒前
传奇3应助Lion采纳,获得10
10秒前
fantianhui完成签到 ,获得积分10
10秒前
10秒前
hc完成签到 ,获得积分10
12秒前
帝都温泉关注了科研通微信公众号
14秒前
IDHNAPHO完成签到,获得积分10
14秒前
letter发布了新的文献求助10
16秒前
李爱国应助Jim采纳,获得10
16秒前
16秒前
ayuelei发布了新的文献求助10
17秒前
十一应助wen采纳,获得10
17秒前
wdlc完成签到,获得积分10
19秒前
20秒前
SciGPT应助糟糕的涵梅采纳,获得10
20秒前
苹果人生完成签到,获得积分20
20秒前
hero_ljw完成签到,获得积分10
21秒前
研友_ZbM2qn完成签到,获得积分10
21秒前
VDC发布了新的文献求助10
22秒前
科研通AI5应助陈虹求采纳,获得40
22秒前
xsss发布了新的文献求助10
23秒前
Hello应助ayuelei采纳,获得10
24秒前
传奇3应助DY采纳,获得10
25秒前
Owen应助DY采纳,获得10
25秒前
大模型应助DY采纳,获得10
25秒前
东方天奇完成签到 ,获得积分10
25秒前
25秒前
25秒前
科目三应助高大的迎梦采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4544308
求助须知:如何正确求助?哪些是违规求助? 3976503
关于积分的说明 12314209
捐赠科研通 3644494
什么是DOI,文献DOI怎么找? 2007062
邀请新用户注册赠送积分活动 1042502
科研通“疑难数据库(出版商)”最低求助积分说明 931557