亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Traffic accident severity prediction with ensemble learning methods

集成学习 交通事故 事故(哲学) 计算机科学 人工智能 工程类 法律工程学 哲学 认识论
作者
Süleyman Çeven,Ahmet Albayrak
出处
期刊:Computers & Electrical Engineering [Elsevier]
卷期号:114: 109101-109101 被引量:10
标识
DOI:10.1016/j.compeleceng.2024.109101
摘要

In this study, decision tree-based models are proposed for classification of traffic accident severity. Traffic accident severity is classified into three categories. The data set used in the study belongs to the province of Kayseri, Turkey. The data consists of urban traffic accident reports (23074 accidents) between 2013 and 2021. There are 39 variables in the data set. As a result of data preprocessing, 15 variables that are meaningful and can be used for the model in the data set were determined. Since the input variables of the model mainly contain categorical data, they were coded with pseudo-coding and a total of 93 input variables were obtained. In the studies, ensemble learning methods such as Random Forest, AdaBoost and MLP methods were used. F1 scores of these methods were found to be 91.72%, 91.27% and 88.95%, respectively. Feature importance levels were calculated for 15 variables used in the model. Gini index and decision trees were used while calculating the importance of the features. Driver fault (0.64) was found to have the most effect on traffic accident severity. This study focuses especially on urban traffic accidents. Urban traffic is crowded in terms of both vehicles and pedestrians. As a result of this, according to the findings obtained in this study, traffic accidents occurred mostly at the intersections with crowded urban areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
安详砖家完成签到,获得积分10
5秒前
温暖水云发布了新的文献求助10
5秒前
若雨凌风完成签到,获得积分0
8秒前
9秒前
爆米花应助Gaopkid采纳,获得10
10秒前
xing完成签到 ,获得积分10
11秒前
13秒前
13秒前
16秒前
18秒前
RKK完成签到,获得积分10
19秒前
19秒前
香丿完成签到 ,获得积分10
22秒前
28秒前
RKK发布了新的文献求助10
30秒前
wanci应助搞怪尔曼采纳,获得10
34秒前
34秒前
linna发布了新的文献求助10
35秒前
666yj完成签到 ,获得积分10
35秒前
今后应助linna采纳,获得10
40秒前
44秒前
l900应助顺利的秋天采纳,获得10
45秒前
Gaopkid完成签到,获得积分10
46秒前
linna完成签到,获得积分10
47秒前
Gaopkid发布了新的文献求助10
49秒前
53秒前
FashionBoy应助传统的书包采纳,获得30
53秒前
59秒前
阿瓜师傅发布了新的文献求助10
59秒前
明镜完成签到 ,获得积分10
1分钟前
Akim应助李桂芳采纳,获得10
1分钟前
1分钟前
1分钟前
ceeray23应助娟纸采纳,获得10
1分钟前
浮浮世世应助科研通管家采纳,获得30
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得30
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
浮浮世世应助科研通管家采纳,获得30
1分钟前
YifanWang应助科研通管家采纳,获得30
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493810
求助须知:如何正确求助?哪些是违规求助? 4591808
关于积分的说明 14434715
捐赠科研通 4524218
什么是DOI,文献DOI怎么找? 2478734
邀请新用户注册赠送积分活动 1463717
关于科研通互助平台的介绍 1436490