Traffic accident severity prediction with ensemble learning methods

集成学习 交通事故 事故(哲学) 计算机科学 人工智能 工程类 法律工程学 认识论 哲学
作者
Süleyman Çeven,Ahmet Albayrak
出处
期刊:Computers & Electrical Engineering [Elsevier]
卷期号:114: 109101-109101 被引量:10
标识
DOI:10.1016/j.compeleceng.2024.109101
摘要

In this study, decision tree-based models are proposed for classification of traffic accident severity. Traffic accident severity is classified into three categories. The data set used in the study belongs to the province of Kayseri, Turkey. The data consists of urban traffic accident reports (23074 accidents) between 2013 and 2021. There are 39 variables in the data set. As a result of data preprocessing, 15 variables that are meaningful and can be used for the model in the data set were determined. Since the input variables of the model mainly contain categorical data, they were coded with pseudo-coding and a total of 93 input variables were obtained. In the studies, ensemble learning methods such as Random Forest, AdaBoost and MLP methods were used. F1 scores of these methods were found to be 91.72%, 91.27% and 88.95%, respectively. Feature importance levels were calculated for 15 variables used in the model. Gini index and decision trees were used while calculating the importance of the features. Driver fault (0.64) was found to have the most effect on traffic accident severity. This study focuses especially on urban traffic accidents. Urban traffic is crowded in terms of both vehicles and pedestrians. As a result of this, according to the findings obtained in this study, traffic accidents occurred mostly at the intersections with crowded urban areas.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
arniu2008发布了新的文献求助10
1秒前
fanfanfan完成签到,获得积分10
1秒前
王金金发布了新的文献求助10
1秒前
2秒前
困困鱼发布了新的文献求助10
2秒前
2秒前
Kycg完成签到,获得积分10
2秒前
2秒前
机灵书易发布了新的文献求助10
2秒前
伶俐的老四完成签到 ,获得积分10
3秒前
HOME完成签到,获得积分10
3秒前
菜虫虫发布了新的文献求助10
3秒前
虚拟的柜子完成签到,获得积分10
3秒前
3秒前
FashionBoy应助dagongren采纳,获得10
3秒前
赵辉完成签到,获得积分10
3秒前
3秒前
jy关注了科研通微信公众号
4秒前
999999发布了新的文献求助10
4秒前
Reachu.Chan完成签到,获得积分10
4秒前
Jasper应助灿灿采纳,获得10
4秒前
4秒前
4秒前
在水一方应助jfz采纳,获得10
4秒前
5秒前
5秒前
fanfanfan发布了新的文献求助10
5秒前
汉堡包应助Liangyu采纳,获得10
5秒前
5秒前
包容初丹发布了新的文献求助10
6秒前
天空之云发布了新的文献求助10
6秒前
桐桐应助吴泰霞采纳,获得10
6秒前
YUYUYU完成签到,获得积分10
6秒前
yy发布了新的文献求助50
6秒前
7秒前
7秒前
Sw1ft发布了新的文献求助10
8秒前
漂泊2025完成签到,获得积分10
8秒前
8秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620188
求助须知:如何正确求助?哪些是违规求助? 4704708
关于积分的说明 14929099
捐赠科研通 4761278
什么是DOI,文献DOI怎么找? 2550838
邀请新用户注册赠送积分活动 1513615
关于科研通互助平台的介绍 1474523