Traffic accident severity prediction with ensemble learning methods

集成学习 交通事故 事故(哲学) 计算机科学 人工智能 工程类 法律工程学 认识论 哲学
作者
Süleyman Çeven,Ahmet Albayrak
出处
期刊:Computers & Electrical Engineering [Elsevier]
卷期号:114: 109101-109101 被引量:10
标识
DOI:10.1016/j.compeleceng.2024.109101
摘要

In this study, decision tree-based models are proposed for classification of traffic accident severity. Traffic accident severity is classified into three categories. The data set used in the study belongs to the province of Kayseri, Turkey. The data consists of urban traffic accident reports (23074 accidents) between 2013 and 2021. There are 39 variables in the data set. As a result of data preprocessing, 15 variables that are meaningful and can be used for the model in the data set were determined. Since the input variables of the model mainly contain categorical data, they were coded with pseudo-coding and a total of 93 input variables were obtained. In the studies, ensemble learning methods such as Random Forest, AdaBoost and MLP methods were used. F1 scores of these methods were found to be 91.72%, 91.27% and 88.95%, respectively. Feature importance levels were calculated for 15 variables used in the model. Gini index and decision trees were used while calculating the importance of the features. Driver fault (0.64) was found to have the most effect on traffic accident severity. This study focuses especially on urban traffic accidents. Urban traffic is crowded in terms of both vehicles and pedestrians. As a result of this, according to the findings obtained in this study, traffic accidents occurred mostly at the intersections with crowded urban areas.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助酷炫柔采纳,获得10
刚刚
王杰秀完成签到 ,获得积分10
1秒前
higgskk发布了新的文献求助10
1秒前
余淮完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
zx598376321完成签到,获得积分0
2秒前
与离完成签到 ,获得积分10
2秒前
高兴中心发布了新的文献求助10
2秒前
标志的蚂蚁完成签到 ,获得积分10
3秒前
董晏殊完成签到,获得积分10
3秒前
venkash发布了新的文献求助10
3秒前
ShengQ完成签到,获得积分10
3秒前
史永桂完成签到,获得积分10
4秒前
4秒前
正直冰露完成签到 ,获得积分10
4秒前
贾舒涵完成签到,获得积分10
5秒前
躺平的搬砖人完成签到,获得积分10
5秒前
LamChem完成签到,获得积分20
6秒前
隐形之桃完成签到 ,获得积分10
6秒前
smh完成签到,获得积分10
6秒前
科研通AI6应助丸子采纳,获得10
6秒前
tiomooo完成签到,获得积分10
7秒前
zzk发布了新的文献求助10
7秒前
落雨寒星5520完成签到,获得积分10
7秒前
yilin完成签到 ,获得积分10
8秒前
Parrot_PAI完成签到,获得积分10
8秒前
LM完成签到 ,获得积分10
8秒前
神勇乐曲完成签到,获得积分20
8秒前
SCI发布了新的文献求助10
8秒前
8秒前
9秒前
绵马紫萁完成签到,获得积分10
9秒前
zhou完成签到,获得积分10
9秒前
任笑白完成签到 ,获得积分10
9秒前
venkash完成签到,获得积分10
10秒前
XXXXH完成签到,获得积分10
10秒前
10秒前
执着期待完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645277
求助须知:如何正确求助?哪些是违规求助? 4768340
关于积分的说明 15027650
捐赠科研通 4803859
什么是DOI,文献DOI怎么找? 2568523
邀请新用户注册赠送积分活动 1525813
关于科研通互助平台的介绍 1485484