Traffic accident severity prediction with ensemble learning methods

集成学习 交通事故 事故(哲学) 计算机科学 人工智能 工程类 法律工程学 哲学 认识论
作者
Süleyman Çeven,Ahmet Albayrak
出处
期刊:Computers & Electrical Engineering [Elsevier BV]
卷期号:114: 109101-109101 被引量:10
标识
DOI:10.1016/j.compeleceng.2024.109101
摘要

In this study, decision tree-based models are proposed for classification of traffic accident severity. Traffic accident severity is classified into three categories. The data set used in the study belongs to the province of Kayseri, Turkey. The data consists of urban traffic accident reports (23074 accidents) between 2013 and 2021. There are 39 variables in the data set. As a result of data preprocessing, 15 variables that are meaningful and can be used for the model in the data set were determined. Since the input variables of the model mainly contain categorical data, they were coded with pseudo-coding and a total of 93 input variables were obtained. In the studies, ensemble learning methods such as Random Forest, AdaBoost and MLP methods were used. F1 scores of these methods were found to be 91.72%, 91.27% and 88.95%, respectively. Feature importance levels were calculated for 15 variables used in the model. Gini index and decision trees were used while calculating the importance of the features. Driver fault (0.64) was found to have the most effect on traffic accident severity. This study focuses especially on urban traffic accidents. Urban traffic is crowded in terms of both vehicles and pedestrians. As a result of this, according to the findings obtained in this study, traffic accidents occurred mostly at the intersections with crowded urban areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丰富的河马完成签到,获得积分10
2秒前
Zachary发布了新的文献求助10
2秒前
2秒前
3秒前
务实青筠完成签到 ,获得积分10
3秒前
司空雨筠发布了新的文献求助10
3秒前
grt发布了新的文献求助10
3秒前
单薄广山完成签到,获得积分10
3秒前
蛋糕完成签到,获得积分20
4秒前
MJ发布了新的文献求助10
4秒前
李健的小迷弟应助YY采纳,获得10
5秒前
西瓜完成签到,获得积分10
5秒前
坚强的冰香完成签到,获得积分10
5秒前
整齐的成败完成签到,获得积分10
8秒前
可爱的函函应助燕恩欢采纳,获得10
8秒前
8秒前
8秒前
9秒前
天天快乐应助凡凡采纳,获得10
10秒前
李诗尧完成签到,获得积分20
11秒前
刚好夏天完成签到 ,获得积分10
11秒前
12秒前
biiii完成签到,获得积分10
12秒前
个性芹菜完成签到,获得积分10
12秒前
laissez_fairy完成签到,获得积分10
13秒前
万能图书馆应助蓝幻雷采纳,获得10
13秒前
XYau完成签到,获得积分10
14秒前
Hello应助nhzz2023采纳,获得10
14秒前
凤凰应助默默采纳,获得100
14秒前
15秒前
JamesPei应助科研狗-加班族采纳,获得10
16秒前
16秒前
科研通AI6应助Jade_2采纳,获得10
17秒前
小昭发布了新的文献求助10
17秒前
18秒前
柚子完成签到,获得积分10
18秒前
zhuzixuan发布了新的文献求助10
19秒前
19秒前
goujuan完成签到,获得积分10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5271518
求助须知:如何正确求助?哪些是违规求助? 4429192
关于积分的说明 13787815
捐赠科研通 4307460
什么是DOI,文献DOI怎么找? 2363567
邀请新用户注册赠送积分活动 1359231
关于科研通互助平台的介绍 1322167