Traffic accident severity prediction with ensemble learning methods

集成学习 交通事故 事故(哲学) 计算机科学 人工智能 工程类 法律工程学 认识论 哲学
作者
Süleyman Çeven,Ahmet Albayrak
出处
期刊:Computers & Electrical Engineering [Elsevier]
卷期号:114: 109101-109101 被引量:10
标识
DOI:10.1016/j.compeleceng.2024.109101
摘要

In this study, decision tree-based models are proposed for classification of traffic accident severity. Traffic accident severity is classified into three categories. The data set used in the study belongs to the province of Kayseri, Turkey. The data consists of urban traffic accident reports (23074 accidents) between 2013 and 2021. There are 39 variables in the data set. As a result of data preprocessing, 15 variables that are meaningful and can be used for the model in the data set were determined. Since the input variables of the model mainly contain categorical data, they were coded with pseudo-coding and a total of 93 input variables were obtained. In the studies, ensemble learning methods such as Random Forest, AdaBoost and MLP methods were used. F1 scores of these methods were found to be 91.72%, 91.27% and 88.95%, respectively. Feature importance levels were calculated for 15 variables used in the model. Gini index and decision trees were used while calculating the importance of the features. Driver fault (0.64) was found to have the most effect on traffic accident severity. This study focuses especially on urban traffic accidents. Urban traffic is crowded in terms of both vehicles and pedestrians. As a result of this, according to the findings obtained in this study, traffic accidents occurred mostly at the intersections with crowded urban areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yoyo20012623完成签到,获得积分10
1秒前
随便打完成签到,获得积分10
3秒前
七熵完成签到 ,获得积分10
5秒前
5秒前
Jerry发布了新的文献求助10
6秒前
Jessiez94发布了新的文献求助10
8秒前
CodeCraft应助冯道言采纳,获得10
8秒前
彭于晏应助guygun采纳,获得10
8秒前
9秒前
11秒前
12秒前
爆米花应助wang5945采纳,获得10
13秒前
良医完成签到 ,获得积分10
13秒前
淡淡天宇完成签到,获得积分10
13秒前
Liu发布了新的文献求助10
15秒前
吹筒仔完成签到,获得积分20
15秒前
掉渣的饼干完成签到,获得积分10
15秒前
叶夜南发布了新的文献求助30
16秒前
17秒前
18秒前
ananan完成签到 ,获得积分10
19秒前
19秒前
20秒前
夏晴发布了新的文献求助20
21秒前
QJZ完成签到 ,获得积分10
22秒前
guygun发布了新的文献求助10
22秒前
tzy完成签到,获得积分10
23秒前
Topofme完成签到,获得积分10
23秒前
与点完成签到,获得积分10
28秒前
zzz完成签到,获得积分10
33秒前
杨春末完成签到,获得积分10
38秒前
打打应助guygun采纳,获得10
39秒前
爆米花应助ZY采纳,获得10
39秒前
无情鼠标完成签到,获得积分20
42秒前
在水一方应助小文殊采纳,获得10
42秒前
俞定尚心才可心完成签到 ,获得积分10
43秒前
快乐的发布了新的文献求助10
43秒前
qiaoke完成签到,获得积分20
44秒前
LYQ完成签到,获得积分10
45秒前
45秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Production Logging: Theoretical and Interpretive Elements 1500
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Mesopotamian Divination Texts: Conversing with the Gods 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3289376
求助须知:如何正确求助?哪些是违规求助? 2926393
关于积分的说明 8426911
捐赠科研通 2597568
什么是DOI,文献DOI怎么找? 1417242
科研通“疑难数据库(出版商)”最低求助积分说明 659637
邀请新用户注册赠送积分活动 642117