已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Traffic accident severity prediction with ensemble learning methods

集成学习 交通事故 事故(哲学) 计算机科学 人工智能 工程类 法律工程学 认识论 哲学
作者
Süleyman Çeven,Ahmet Albayrak
出处
期刊:Computers & Electrical Engineering [Elsevier]
卷期号:114: 109101-109101 被引量:10
标识
DOI:10.1016/j.compeleceng.2024.109101
摘要

In this study, decision tree-based models are proposed for classification of traffic accident severity. Traffic accident severity is classified into three categories. The data set used in the study belongs to the province of Kayseri, Turkey. The data consists of urban traffic accident reports (23074 accidents) between 2013 and 2021. There are 39 variables in the data set. As a result of data preprocessing, 15 variables that are meaningful and can be used for the model in the data set were determined. Since the input variables of the model mainly contain categorical data, they were coded with pseudo-coding and a total of 93 input variables were obtained. In the studies, ensemble learning methods such as Random Forest, AdaBoost and MLP methods were used. F1 scores of these methods were found to be 91.72%, 91.27% and 88.95%, respectively. Feature importance levels were calculated for 15 variables used in the model. Gini index and decision trees were used while calculating the importance of the features. Driver fault (0.64) was found to have the most effect on traffic accident severity. This study focuses especially on urban traffic accidents. Urban traffic is crowded in terms of both vehicles and pedestrians. As a result of this, according to the findings obtained in this study, traffic accidents occurred mostly at the intersections with crowded urban areas.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Sickey完成签到,获得积分10
2秒前
香菜大姐完成签到,获得积分10
3秒前
开朗的哈密瓜完成签到 ,获得积分10
3秒前
晨曦呢完成签到 ,获得积分10
5秒前
萝卜发布了新的文献求助10
5秒前
6秒前
rrrrrrry发布了新的文献求助10
6秒前
伶俐海安完成签到 ,获得积分10
8秒前
九日橙完成签到 ,获得积分10
9秒前
10秒前
Davidjin完成签到,获得积分10
11秒前
藤井树发布了新的文献求助10
13秒前
研友_Z6Qrbn完成签到,获得积分10
13秒前
无情的问枫完成签到 ,获得积分10
14秒前
冬日暖阳完成签到,获得积分10
14秒前
等待凡桃发布了新的文献求助10
15秒前
情怀应助echo采纳,获得10
16秒前
ralph_liu完成签到,获得积分10
17秒前
17秒前
临河盗龙完成签到,获得积分10
17秒前
rita_sun1969完成签到,获得积分10
17秒前
彩色亿先完成签到 ,获得积分10
18秒前
田様应助清爽的如波采纳,获得10
18秒前
姜昕完成签到,获得积分10
18秒前
轩辕寄翠完成签到 ,获得积分10
19秒前
温婉的凝芙完成签到 ,获得积分10
20秒前
土豪的灵竹完成签到 ,获得积分10
20秒前
临河盗龙发布了新的文献求助10
20秒前
肥牛完成签到,获得积分10
21秒前
包容的以彤完成签到 ,获得积分10
21秒前
妖妖灵1111完成签到 ,获得积分10
22秒前
NiNi完成签到 ,获得积分10
22秒前
22秒前
Shyee完成签到 ,获得积分0
23秒前
27秒前
28秒前
美味的屑狐狸完成签到 ,获得积分10
29秒前
朱美润完成签到 ,获得积分10
30秒前
30秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5705435
求助须知:如何正确求助?哪些是违规求助? 5164132
关于积分的说明 15245526
捐赠科研通 4859289
什么是DOI,文献DOI怎么找? 2607711
邀请新用户注册赠送积分活动 1558849
关于科研通互助平台的介绍 1516399