Traffic accident severity prediction with ensemble learning methods

集成学习 交通事故 事故(哲学) 计算机科学 人工智能 工程类 法律工程学 哲学 认识论
作者
Süleyman Çeven,Ahmet Albayrak
出处
期刊:Computers & Electrical Engineering [Elsevier BV]
卷期号:114: 109101-109101 被引量:10
标识
DOI:10.1016/j.compeleceng.2024.109101
摘要

In this study, decision tree-based models are proposed for classification of traffic accident severity. Traffic accident severity is classified into three categories. The data set used in the study belongs to the province of Kayseri, Turkey. The data consists of urban traffic accident reports (23074 accidents) between 2013 and 2021. There are 39 variables in the data set. As a result of data preprocessing, 15 variables that are meaningful and can be used for the model in the data set were determined. Since the input variables of the model mainly contain categorical data, they were coded with pseudo-coding and a total of 93 input variables were obtained. In the studies, ensemble learning methods such as Random Forest, AdaBoost and MLP methods were used. F1 scores of these methods were found to be 91.72%, 91.27% and 88.95%, respectively. Feature importance levels were calculated for 15 variables used in the model. Gini index and decision trees were used while calculating the importance of the features. Driver fault (0.64) was found to have the most effect on traffic accident severity. This study focuses especially on urban traffic accidents. Urban traffic is crowded in terms of both vehicles and pedestrians. As a result of this, according to the findings obtained in this study, traffic accidents occurred mostly at the intersections with crowded urban areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助雪蛤采纳,获得10
1秒前
fancynancy应助lswhyr采纳,获得20
2秒前
4秒前
HM发布了新的文献求助10
4秒前
顾矜应助科研通管家采纳,获得10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
Dada应助科研通管家采纳,获得30
7秒前
yar应助科研通管家采纳,获得10
7秒前
高挑的小虾米完成签到,获得积分10
7秒前
hi应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
7秒前
ED应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
ark861023发布了新的文献求助10
8秒前
felix发布了新的文献求助10
9秒前
旺仔发布了新的文献求助20
10秒前
冯珂完成签到 ,获得积分10
12秒前
香蕉觅云应助难过的笑天采纳,获得10
12秒前
13秒前
conlensce完成签到,获得积分10
14秒前
14秒前
hs完成签到,获得积分10
16秒前
hyx发布了新的文献求助10
17秒前
郑同学完成签到,获得积分10
17秒前
20秒前
hazhuxixi完成签到,获得积分10
20秒前
21秒前
旺仔完成签到,获得积分20
21秒前
范户晓完成签到,获得积分10
21秒前
热情过客发布了新的文献求助20
24秒前
拓跋书芹完成签到,获得积分10
25秒前
随便发布了新的文献求助10
26秒前
26秒前
花痴的手套完成签到 ,获得积分10
27秒前
小乖完成签到 ,获得积分10
28秒前
29秒前
量子星尘发布了新的文献求助10
30秒前
清秀的靖雁应助果实采纳,获得100
30秒前
wjn完成签到,获得积分10
31秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961075
求助须知:如何正确求助?哪些是违规求助? 3507282
关于积分的说明 11135478
捐赠科研通 3239777
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872379
科研通“疑难数据库(出版商)”最低求助积分说明 803150