Traffic accident severity prediction with ensemble learning methods

集成学习 交通事故 事故(哲学) 计算机科学 人工智能 工程类 法律工程学 认识论 哲学
作者
Süleyman Çeven,Ahmet Albayrak
出处
期刊:Computers & Electrical Engineering [Elsevier]
卷期号:114: 109101-109101 被引量:10
标识
DOI:10.1016/j.compeleceng.2024.109101
摘要

In this study, decision tree-based models are proposed for classification of traffic accident severity. Traffic accident severity is classified into three categories. The data set used in the study belongs to the province of Kayseri, Turkey. The data consists of urban traffic accident reports (23074 accidents) between 2013 and 2021. There are 39 variables in the data set. As a result of data preprocessing, 15 variables that are meaningful and can be used for the model in the data set were determined. Since the input variables of the model mainly contain categorical data, they were coded with pseudo-coding and a total of 93 input variables were obtained. In the studies, ensemble learning methods such as Random Forest, AdaBoost and MLP methods were used. F1 scores of these methods were found to be 91.72%, 91.27% and 88.95%, respectively. Feature importance levels were calculated for 15 variables used in the model. Gini index and decision trees were used while calculating the importance of the features. Driver fault (0.64) was found to have the most effect on traffic accident severity. This study focuses especially on urban traffic accidents. Urban traffic is crowded in terms of both vehicles and pedestrians. As a result of this, according to the findings obtained in this study, traffic accidents occurred mostly at the intersections with crowded urban areas.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
2秒前
蓝天完成签到,获得积分10
4秒前
Dr_Stars完成签到,获得积分10
8秒前
9秒前
9秒前
三白眼完成签到,获得积分10
11秒前
乐空思应助yu采纳,获得10
11秒前
11秒前
12秒前
爱不爱看化学完成签到,获得积分10
12秒前
dengdeng发布了新的文献求助10
12秒前
ZeSheng发布了新的文献求助10
14秒前
飞云完成签到 ,获得积分20
15秒前
温婉的孤兰完成签到,获得积分10
15秒前
15秒前
15秒前
小垃圾完成签到,获得积分10
16秒前
酷酷李可爱婕完成签到 ,获得积分10
18秒前
18秒前
Hannah完成签到,获得积分10
18秒前
充电宝应助dengdeng采纳,获得10
18秒前
王若琪完成签到 ,获得积分10
19秒前
Dr_Stars发布了新的文献求助10
20秒前
CH3OH发布了新的文献求助30
20秒前
juzi完成签到 ,获得积分10
21秒前
半间歇式聚合反应完成签到 ,获得积分10
21秒前
雨无意完成签到,获得积分10
21秒前
胡茶茶完成签到 ,获得积分10
22秒前
goodbuhui完成签到,获得积分10
22秒前
一行白鹭上青天完成签到 ,获得积分10
23秒前
复杂从梦完成签到,获得积分10
24秒前
24秒前
25秒前
cnvax完成签到,获得积分10
25秒前
26秒前
ahui完成签到 ,获得积分10
26秒前
bean完成签到 ,获得积分10
27秒前
28秒前
leek完成签到 ,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603579
求助须知:如何正确求助?哪些是违规求助? 4688566
关于积分的说明 14854693
捐赠科研通 4693840
什么是DOI,文献DOI怎么找? 2540863
邀请新用户注册赠送积分活动 1507108
关于科研通互助平台的介绍 1471806