过电位
电催化剂
析氧
氧化物
钴
电解
材料科学
氧化钴
纳米片
化学工程
阳极
无机化学
化学
纳米技术
物理化学
电化学
冶金
电极
电解质
工程类
作者
Zhenglong Fan,Qintao Sun,Hao Yang,Wenxiang Zhu,Fan Liao,Qi Shao,Tianyang Zhang,Hui Huang,Tao Cheng,Yang Liu,Mingwang Shao,Minhua Shao,Zhenhui Kang
出处
期刊:ACS Nano
[American Chemical Society]
日期:2024-01-29
卷期号:18 (6): 5029-5039
被引量:2
标识
DOI:10.1021/acsnano.3c11199
摘要
Clarifying the structure–reactivity relationship of non-noble-metal electrocatalysts is one of the decisive factors for the practical application of water electrolysis. In this field, the anodic oxygen evolution reaction (OER) with a sluggish kinetic process has become a huge challenge for large-scale production of high-purity hydrogen. Here we synthesize a layered quasi-nevskite metastable-phase cobalt oxide (LQNMP-Co2O3) nanosheet via a simple molten alkali synthesis strategy. The unit-cell parameters of LQNMP-Co2O3 are determined to be a = b = 2.81 Å and c = 6.89 Å with a space group of P3̅m1 (No. 164). The electrochemical results show that the LQNMP-Co2O3 electrocatalyst enables delivering an ultralow overpotential of 266 mV at a current density of 10 mA cmgeo–2 with excellent durability. The operando XANES and EXAFS analyses clearly reveal the origin of the OER activity and the electrochemical stability of the LQNMP-Co2O3 electrocatalyst. Density functional theory (DFT) simulations show that the energy barrier of the rate-determining step (RDS) (from *O to *OOH) is significantly reduced on the LQNMP-Co2O3 electrocatalyst by comparing with simulated monolayered CoO2 (M-CoO2).
科研通智能强力驱动
Strongly Powered by AbleSci AI