Multi-satellite cooperative scheduling method for large-scale tasks based on hybrid graph neural network and metaheuristic algorithm

元启发式 计算机科学 解算器 算法 调度(生产过程) 贪婪算法 数学优化 数学 程序设计语言
作者
Xiaoen Feng,Yuqing Li,Minqiang Xu
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:60: 102362-102362 被引量:6
标识
DOI:10.1016/j.aei.2024.102362
摘要

Traditional heuristic optimization algorithms are no longer applicable to the multiple satellites scheduling with large-scale tasks, as they are unable to provide satisfactory performance in terms of convergence and speed when addressing complex constraint conflicts. Therefore, we propose a multi-satellite cooperative scheduling method for large-scale tasks based on a hybrid graph neural network (GNN) and metaheuristic algorithm. By using the representation and extraction capability of GNN for relations in graph, the features of large-scale tasks and their constraint relations were expressed, and the generalized knowledge was extracted. And combined with metaheuristic algorithm, the optimization framework for large-scale satellite task scheduling based knowledge and data was implemented. The method consists of a GNN pre-solver module for static constraint conflicts and a metaheuristic optimization module for dynamic constraint conflicts of satellite missions. In the GNN pre-solver module, the graph sample and aggregate network was used to learn and extract the common knowledge in the static task-conflict graph, and provided effective prior information for the metaheuristic optimization module. The quadratic unconstrained binary optimization loss function was designed with multiple influencing factors, to convert the discrete optimization function into a continuous function; a greedy threshold was also added to improve the task completion rate. Finally, numerical experimental results showed that the proposed method can achieve an efficient solution to the multi-satellite scheduling problem with tens of thousands tasks. Compared with the commonly used multi-satellite scheduling algorithms (the genetic algorithm (GA) and greedy-GA), the proposed method can obtain higher-quality solutions under the same conditions and greatly improve the computational efficiency of large-scale mission planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
从心从心发布了新的文献求助10
刚刚
1秒前
1秒前
酥饼完成签到,获得积分10
2秒前
JamesPei应助咖啡不加糖采纳,获得10
2秒前
都是完成签到,获得积分10
3秒前
Wtt发布了新的文献求助10
3秒前
孙小小完成签到,获得积分10
4秒前
4秒前
5秒前
蛋花发布了新的文献求助30
5秒前
科研通AI2S应助彼得大帝采纳,获得10
5秒前
guagua发布了新的文献求助10
6秒前
Carlos完成签到,获得积分10
6秒前
cctv18应助科研通管家采纳,获得20
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
cctv18应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
八宝粥发布了新的文献求助10
8秒前
jevon应助科研通管家采纳,获得10
8秒前
8秒前
Cathy_Chen发布了新的文献求助10
10秒前
FartKing发布了新的文献求助10
10秒前
CodeCraft应助guagua采纳,获得10
13秒前
思源应助blank采纳,获得10
13秒前
请叫我鬼才完成签到,获得积分10
14秒前
充电宝应助合适的芹菜采纳,获得10
14秒前
momo完成签到,获得积分10
18秒前
在水一方应助Cathy_Chen采纳,获得10
18秒前
guagua完成签到,获得积分10
19秒前
20秒前
21秒前
CodeCraft应助从心从心采纳,获得10
22秒前
23秒前
今后应助udbjn123采纳,获得10
23秒前
李莉莉完成签到,获得积分10
24秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Development of general formulas for bolted flanges, by E.O. Waters [and others] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3255537
求助须知:如何正确求助?哪些是违规求助? 2897885
关于积分的说明 8298455
捐赠科研通 2566950
什么是DOI,文献DOI怎么找? 1394095
科研通“疑难数据库(出版商)”最低求助积分说明 652731
邀请新用户注册赠送积分活动 630364