MPTP公司
神经科学
神经干细胞
线粒体
生物
干细胞
细胞生物学
多巴胺
多巴胺能
作者
Ying He,Ruicheng Li,Yuxi Yu,Chusheng Huang,Zhiran Xu,Tianbao Wang,Ming Chen,Hongri Huang,Zhongquan Qi
标识
DOI:10.1016/j.neuint.2024.105700
摘要
Currently, there is no effective treatment for Parkinson's disease (PD), and the regenerative treatment of neural stem cells (NSCs) is considered the most promising method. This study aimed to investigate the protective effect and mechanism of NSCs on neurons in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced cynomolgus monkey (Macaca fascicularis) model of PD. We first found that injecting NSCs into the subarachnoid space relieved motor dysfunction in PD cynomolgus monkeys, as well as reduced dopaminergic neuron loss and neuronal damage in the substantia nigra (SN) and striatum. Besides, NSCs decreased 17-estradiol (E2) level, an estrogen, in the cerebrospinal fluid (CSF) of PD cynomolgus monkeys, which shows NSCs may provide neuro-protection by controlling estrogen levels in the CSF. Furthermore, NSCs elevated proliferator-activated receptor gamma coactivator-1 alpha (PGC-1a), mitofusin 2 (MFN2), and optic atrophy 1 (OPA1) expression, three genes mediating mitochondrial biogenesis, in the SN and striatum of PD monkeys. In addition, NSCs suppress reactive oxygen species (ROS) production caused by MPTP, as well as mitochondrial autophagy, therefore preserving dopaminergic neurons. In summary, our findings show that NSCs may preserve dopaminergic and neuronal cells in an MPTP-induced PD cynomolgus monkey model. These protective benefits might be attributed to NSCs' ability of modulating estrogen balance, increasing mitochondrial biogenesis, and limiting oxidative stress and mitochondrial autophagy. These findings add to our understanding of the mechanism of NSC treatment and shed light on further clinical treatment options.
科研通智能强力驱动
Strongly Powered by AbleSci AI