碲化镉光电
材料科学
光电子学
带隙
太阳能电池
串联
开路电压
图层(电子)
电流密度
短路
电压
纳米技术
复合材料
电气工程
物理
量子力学
工程类
作者
Mustapha Isah,Camellia Doroody,Kazi Sajedur Rahman,Mohd Nazri Abd Rahman,Adamu Ahmed Goje,Manzoore Elahi M. Soudagar,Sieh Kiong Tiong,Nabisab Mujawar Mubarak,Ahmad Wafi Mahmood Zuhdi
标识
DOI:10.1038/s41598-024-55616-2
摘要
Abstract A numerical analysis of a CdTe/Si dual-junction solar cell in terms of defect density introduced at various defect energy levels in the absorber layer is provided. The impact of defect concentration is analyzed against the thickness of the CdTe layer, and variation of the top and bottom cell bandgaps is studied. The results show that CdTe thin film with defects density between 10 14 and 10 15 cm −3 is acceptable for the top cell of the designed dual-junction solar cell. The variations of the defect concentrations against the thickness of the CdTe layer indicate that the open circuit voltage, short circuit current density, and efficiency (ƞ) are more affected by the defect density at higher CdTe thickness. In contrast, the Fill factor is mainly affected by the defect density, regardless of the thin film’s thickness. An acceptable defect density of up to 10 15 cm −3 at a CdTe thickness of 300 nm was obtained from this work. The bandgap variation shows optimal results for a CdTe with bandgaps ranging from 1.45 to 1.7 eV in tandem with a Si bandgap of about 1.1 eV. This study highlights the significance of tailoring defect density at different energy levels to realize viable CdTe/Si dual junction tandem solar cells. It also demonstrates how the impact of defect concentration changes with the thickness of the solar cell absorber layer.
科研通智能强力驱动
Strongly Powered by AbleSci AI