阳极
锂(药物)
材料科学
碳纳米管
纳米技术
电容器
电容
功率密度
电极
化学工程
电流密度
纳米管
超级电容器
电化学
阴极
比表面积
碳纤维
复合材料
化学
有机化学
电气工程
功率(物理)
物理
催化作用
量子力学
复合数
物理化学
内分泌学
电压
工程类
医学
作者
Wenling Wu,Jiahao Diwu,Jiang Guo,Yuan Fang,Lei Wang,Chenguang Li,Biao Zhang,Jianfeng Zhu
标识
DOI:10.1016/j.jcis.2024.02.177
摘要
The matching of long cycle life, high power density, and high energy density has been an inevitable requirement for the development of efficient anode materials for lithium-ion capacitors (LICs). Here, we introduce an N-doped carbon nanotube hollow polyhedron structure (Co3O4-CNT-800) with high specific surface area and active sites, which is anchored with two-dimensional (2D) Ti3C2Tx nanosheets with metallic conductivity and abundant surface functional groups by electrostatic adsorption to form a hierarchical multilevel hollow semi-covered framework structure. Benefiting from the synergistic effect between Co3O4-CNT-800 and Ti3C2Tx, the composites exhibit superior energy storage efficiency and long cycling stability. The Co3O4-CNT-800/Ti3C2Tx electrodes exhibit a high specific capacity of 817C/g at a. current density of 0.5 A/g under the three-electrode system, and the capacity retention rate is 91 % after 5000 cycles at a current density of 2 A/g. Additionally, we assembled Co3O4-CNT-800/Ti3C2Tx as the anode and Activated carbon (AC) cathode to form LIC devices, which showed an electrochemical test result of 90.01 % capacitance retention after 8000 cycles at 2 A/g, and the maximum power density of the LIC was 3000 W/kg and the maximum energy density was 121 Wh/kg. This work pioneered the combination of N-doped carbon nanotube hollow polyhedron structure with two-dimensional Ti3C2Tx, which provides an effective strategy for preparing LIC negative electrode materials with high specific capacitance and long cycling stability.
科研通智能强力驱动
Strongly Powered by AbleSci AI