Real‐Time Laryngeal Cancer Boundaries Delineation on White Light and Narrow‐Band Imaging Laryngoscopy with Deep Learning

喉镜检查 窄带成像 医学 白色(突变) 白光 癌症 放射科 插管 外科 内窥镜检查 光学 物理 内科学 生物 生物化学 基因
作者
Claudio Sampieri,Muhammad Adeel Azam,Alessandro Ioppi,Chiara Baldini,Sara Moccia,Dahee Kim,Alessandro Tirrito,Alberto Paderno,Cesare Piazza,Leonardo S. Mattos,Giorgio Peretti
出处
期刊:Laryngoscope [Wiley]
卷期号:134 (6): 2826-2834 被引量:6
标识
DOI:10.1002/lary.31255
摘要

Objective To investigate the potential of deep learning for automatically delineating (segmenting) laryngeal cancer superficial extent on endoscopic images and videos. Methods A retrospective study was conducted extracting and annotating white light (WL) and Narrow‐Band Imaging (NBI) frames to train a segmentation model ( SegMENT‐Plus ). Two external datasets were used for validation. The model's performances were compared with those of two otolaryngology residents . In addition, the model was tested on real intraoperative laryngoscopy videos. Results A total of 3933 images of laryngeal cancer from 557 patients were used. The model achieved the following median values (interquartile range): Dice Similarity Coefficient (DSC) = 0.83 (0.70–0.90), Intersection over Union (IoU) = 0.83 (0.73–0.90), Accuracy = 0.97 (0.95–0.99), Inference Speed = 25.6 (25.1–26.1) frames per second. The external testing cohorts comprised 156 and 200 images. SegMENT‐Plus performed similarly on all three datasets for DSC ( p = 0.05) and IoU ( p = 0.07). No significant differences were noticed when separately analyzing WL and NBI test images on DSC ( p = 0.06) and IoU ( p = 0.78) and when analyzing the model versus the two residents on DSC ( p = 0.06) and IoU (Senior vs. SegMENT‐Plus , p = 0.13; Junior vs. SegMENT‐Plus , p = 1.00). The model was then tested on real intraoperative laryngoscopy videos. Conclusion SegMENT‐Plus can accurately delineate laryngeal cancer boundaries in endoscopic images, with performances equal to those of two otolaryngology residents. The results on the two external datasets demonstrate excellent generalization capabilities. The computation speed of the model allowed its application on videolaryngoscopies simulating real‐time use . Clinical trials are needed to evaluate the role of this technology in surgical practice and resection margin improvement. Level of Evidence III Laryngoscope , 134:2826–2834, 2024
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
儒雅致远发布了新的文献求助10
刚刚
可爱的函函应助朴实山兰采纳,获得10
刚刚
刚刚
九五七a发布了新的文献求助200
刚刚
pipishi完成签到 ,获得积分10
刚刚
旅程发布了新的文献求助10
1秒前
阿欣完成签到,获得积分10
1秒前
YY发布了新的文献求助10
1秒前
2秒前
怕孤单的丁真完成签到,获得积分10
2秒前
yx_cheng应助sunsold采纳,获得30
2秒前
huangninghuang完成签到,获得积分10
3秒前
鱼跃完成签到,获得积分10
3秒前
研友_nvGWwZ发布了新的文献求助10
3秒前
4秒前
4秒前
鳗鱼盼夏完成签到,获得积分10
5秒前
5秒前
九月完成签到,获得积分10
5秒前
彭于晏应助烩面大师采纳,获得10
5秒前
能干的cen完成签到 ,获得积分10
5秒前
英俊的铭应助fs采纳,获得10
5秒前
丘比特应助fs采纳,获得10
5秒前
6秒前
可以发布了新的文献求助10
6秒前
科研通AI2S应助beikou采纳,获得10
6秒前
可爱丸子完成签到,获得积分10
6秒前
6秒前
7秒前
Ma完成签到,获得积分10
7秒前
Owen应助Robe采纳,获得10
8秒前
Wang发布了新的文献求助10
8秒前
所所应助简单幸福采纳,获得10
9秒前
FashionBoy应助YY采纳,获得10
10秒前
kirito发布了新的文献求助10
10秒前
Ethan完成签到,获得积分10
10秒前
zy_完成签到,获得积分10
10秒前
香蕉易形关注了科研通微信公众号
11秒前
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582