Real‐Time Laryngeal Cancer Boundaries Delineation on White Light and Narrow‐Band Imaging Laryngoscopy with Deep Learning

喉镜检查 窄带成像 医学 白色(突变) 白光 癌症 放射科 插管 外科 内窥镜检查 光学 物理 内科学 生物 生物化学 基因
作者
Claudio Sampieri,Muhammad Adeel Azam,Alessandro Ioppi,Chiara Baldini,Sara Moccia,Dahee Kim,Alessandro Tirrito,Alberto Paderno,Cesare Piazza,Leonardo S. Mattos,Giorgio Peretti
出处
期刊:Laryngoscope [Wiley]
卷期号:134 (6): 2826-2834 被引量:6
标识
DOI:10.1002/lary.31255
摘要

Objective To investigate the potential of deep learning for automatically delineating (segmenting) laryngeal cancer superficial extent on endoscopic images and videos. Methods A retrospective study was conducted extracting and annotating white light (WL) and Narrow‐Band Imaging (NBI) frames to train a segmentation model ( SegMENT‐Plus ). Two external datasets were used for validation. The model's performances were compared with those of two otolaryngology residents . In addition, the model was tested on real intraoperative laryngoscopy videos. Results A total of 3933 images of laryngeal cancer from 557 patients were used. The model achieved the following median values (interquartile range): Dice Similarity Coefficient (DSC) = 0.83 (0.70–0.90), Intersection over Union (IoU) = 0.83 (0.73–0.90), Accuracy = 0.97 (0.95–0.99), Inference Speed = 25.6 (25.1–26.1) frames per second. The external testing cohorts comprised 156 and 200 images. SegMENT‐Plus performed similarly on all three datasets for DSC ( p = 0.05) and IoU ( p = 0.07). No significant differences were noticed when separately analyzing WL and NBI test images on DSC ( p = 0.06) and IoU ( p = 0.78) and when analyzing the model versus the two residents on DSC ( p = 0.06) and IoU (Senior vs. SegMENT‐Plus , p = 0.13; Junior vs. SegMENT‐Plus , p = 1.00). The model was then tested on real intraoperative laryngoscopy videos. Conclusion SegMENT‐Plus can accurately delineate laryngeal cancer boundaries in endoscopic images, with performances equal to those of two otolaryngology residents. The results on the two external datasets demonstrate excellent generalization capabilities. The computation speed of the model allowed its application on videolaryngoscopies simulating real‐time use . Clinical trials are needed to evaluate the role of this technology in surgical practice and resection margin improvement. Level of Evidence III Laryngoscope , 134:2826–2834, 2024
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pfangjin发布了新的文献求助10
刚刚
老仙翁发布了新的文献求助30
1秒前
钰钰yuyu完成签到,获得积分10
2秒前
2秒前
Xiaoping发布了新的文献求助10
2秒前
FashionBoy应助qh5706采纳,获得10
3秒前
FeLaN发布了新的文献求助20
3秒前
Orange应助诚心的焱采纳,获得10
4秒前
wyl完成签到,获得积分10
4秒前
雷7967发布了新的文献求助10
4秒前
Akim应助ZSJ采纳,获得10
4秒前
胡胡完成签到,获得积分10
5秒前
5秒前
6秒前
111xasb完成签到,获得积分10
6秒前
老仙翁完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
《子非鱼》完成签到,获得积分10
6秒前
易大师完成签到,获得积分10
7秒前
尹冰之完成签到,获得积分10
7秒前
ania完成签到,获得积分10
7秒前
呢喃完成签到 ,获得积分10
8秒前
南有乔木完成签到,获得积分10
8秒前
8秒前
李爱国应助Xiaoping采纳,获得10
9秒前
SPLjoker完成签到,获得积分10
9秒前
火星上友易完成签到,获得积分10
9秒前
吐司匹林发布了新的文献求助30
10秒前
小孟吖发布了新的文献求助10
10秒前
Yziii应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得30
11秒前
Akim应助科研通管家采纳,获得10
11秒前
ajie发布了新的文献求助10
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
上官若男应助科研通管家采纳,获得30
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
xjcy应助科研通管家采纳,获得10
11秒前
CipherSage应助koukaki采纳,获得10
11秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257586
求助须知:如何正确求助?哪些是违规求助? 2899484
关于积分的说明 8306019
捐赠科研通 2568694
什么是DOI,文献DOI怎么找? 1395263
科研通“疑难数据库(出版商)”最低求助积分说明 652986
邀请新用户注册赠送积分活动 630793