NeuTox: A weighted ensemble model for screening potential neuronal cytotoxicity of chemicals based on various types of molecular representations

细胞毒性 神经毒性 人工智能 机器学习 计算机科学 分子描述符 试验装置 一般化 化学 生物信息学 数量结构-活动关系 毒性 生物 体外 生物化学 数学 数学分析 有机化学
作者
Xuejun He,Zeguo Yang,Ling Wang,Yuzhen Sun,Huiming Cao,Yong Liang
出处
期刊:Journal of Hazardous Materials [Elsevier BV]
卷期号:465: 133443-133443 被引量:4
标识
DOI:10.1016/j.jhazmat.2024.133443
摘要

Chemical-induced neurotoxicity has been widely brought into focus in the risk assessment of chemical safety. However, the traditional in vivo animal models to evaluate neurotoxicity are time-consuming and expensive, which cannot completely represent the pathophysiology of neurotoxicity in humans. Cytotoxicity to human neuroblastoma cell line (SH-SY5Y) is commonly used as an alternative to animal testing for the assessment of neurotoxicity, yet it is still not appropriate for high throughput screening of potential neuronal cytotoxicity of chemicals. In this study, we constructed an ensemble prediction model, termed NeuTox, by combining multiple machine learning algorithms with molecular representations based on the weighted score of Particle Swarm Optimization. For the test set, NeuTox shows excellent performance with an accuracy of 0.9064, which are superior to the top-performing individual models. The subsequent experimental verifications reveal that 5,5'-isopropylidenedi-2-biphenylol and 4,4'-cyclo-hexylidenebisphenol exhibited stronger SH-SY5Y-based cytotoxicity compared to bisphenol A, suggesting that NeuTox has good generalization ability in the first-tier assessment of neuronal cytotoxicity of BPA analogs. For ease of use, NeuTox is presented as an online web server that can be freely accessed via http://www.iehneutox-predictor.cn/NeuToxPredict/Predict.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
刘金凤发布了新的文献求助10
2秒前
烟花应助SWJ采纳,获得10
2秒前
2秒前
Louis发布了新的文献求助10
2秒前
2秒前
helen发布了新的文献求助10
2秒前
科研通AI6应助金金采纳,获得10
3秒前
牛马日常完成签到,获得积分10
3秒前
LucyLi完成签到,获得积分10
3秒前
iNk应助小满采纳,获得10
4秒前
GQ发布了新的文献求助10
4秒前
尘路遐远发布了新的文献求助10
5秒前
飞流直下发布了新的文献求助10
5秒前
明朗发布了新的文献求助10
5秒前
斯文败类应助ryan采纳,获得10
6秒前
7秒前
7秒前
YDM完成签到,获得积分10
7秒前
Jeff发布了新的文献求助10
7秒前
Micalblame完成签到,获得积分10
7秒前
孤独又夏完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
10秒前
10秒前
宇哥完成签到,获得积分10
11秒前
11秒前
充电宝应助Louis采纳,获得10
11秒前
11秒前
牛牛牛完成签到,获得积分10
11秒前
拿起蜡笔小新完成签到 ,获得积分10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097403
求助须知:如何正确求助?哪些是违规求助? 4309929
关于积分的说明 13428703
捐赠科研通 4137399
什么是DOI,文献DOI怎么找? 2266602
邀请新用户注册赠送积分活动 1269747
关于科研通互助平台的介绍 1206069