亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MRI‐Based Machine Learning Radiomics for Preoperative Assessment of Human Epidermal Growth Factor Receptor 2 Status in Urothelial Bladder Carcinoma

Lasso(编程语言) 医学 曼惠特尼U检验 无线电技术 特征选择 接收机工作特性 队列 威尔科克森符号秩检验 机器学习 膀胱癌 卡帕 肿瘤科 人工智能 磁共振成像 算法 放射科 内科学 癌症 计算机科学 数学 万维网 几何学
作者
Ruixi Yu,Lingkai Cai,Yuxi Gong,Xueying Sun,Kai Li,Qiang Cao,Xiao Yang,Qiang Lü
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
被引量:1
标识
DOI:10.1002/jmri.29342
摘要

Background The human epidermal growth factor receptor 2 (HER2) has recently emerged as hotspot in targeted therapy for urothelial bladder cancer (UBC). The HER2 status is mainly identified by immunohistochemistry (IHC), preoperative and noninvasive methods for determining HER2 status in UBC remain in searching. Purposes To investigate whether radiomics features extracted from MRI using machine learning algorithms can noninvasively evaluate the HER2 status in UBC. Study Type Retrospective. Population One hundred ninety‐five patients (age: 68.7 ± 10.5 years) with 14.3% females from January 2019 to May 2023 were divided into training (N = 156) and validation (N = 39) cohorts, and 43 patients (age: 67.1 ± 13.1 years) with 13.9% females from June 2023 to January 2024 constituted the test cohort (N = 43). Field Strength/Sequence 3 T, T2‐weighted imaging (turbo spin‐echo), diffusion‐weighted imaging (breathing‐free spin echo). Assessment The HER2 status were assessed by IHC. Radiomics features were extracted from MRI images. Pearson correlation coefficient and the least absolute shrinkage and selection operator (LASSO) were applied for feature selection, and six machine learning models were established with optimal features to identify the HER2 status in UBC. Statistical Tests Mann–Whitney U ‐test, chi‐square test, LASSO algorithm, receiver operating characteristic analysis, and DeLong test. Results Three thousand forty‐five radiomics features were extracted from each lesion, and 22 features were retained for analysis. The Support Vector Machine model demonstrated the best performance, with an AUC of 0.929 (95% CI: 0.888–0.970) and accuracy of 0.859 in the training cohort, AUC of 0.886 (95% CI: 0.780–0.993) and accuracy of 0.846 in the validation cohort, and AUC of 0.712 (95% CI: 0.535–0.889) and accuracy of 0.744 in the test cohort. Data Conclusion MRI‐based radiomics features combining machine learning algorithm provide a promising approach to assess HER2 status in UBC noninvasively and preoperatively. Evidence Level 2 Technical Efficacy Stage 3
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2分钟前
luckyalias完成签到 ,获得积分10
2分钟前
ppapppap发布了新的文献求助10
2分钟前
ppapppap完成签到,获得积分20
2分钟前
wangermazi完成签到,获得积分10
3分钟前
脑洞疼应助Cassel采纳,获得10
3分钟前
4分钟前
Cassel发布了新的文献求助10
4分钟前
桐桐应助科研通管家采纳,获得10
4分钟前
传奇3应助科研通管家采纳,获得10
6分钟前
耳与总完成签到,获得积分10
8分钟前
Sandy完成签到,获得积分10
9分钟前
科研通AI2S应助cc采纳,获得10
10分钟前
12分钟前
彭于晏应助科研通管家采纳,获得10
12分钟前
如意竺完成签到,获得积分10
13分钟前
13分钟前
13分钟前
13分钟前
LLL完成签到,获得积分10
14分钟前
jyy完成签到,获得积分10
14分钟前
14分钟前
zz发布了新的文献求助10
14分钟前
wanci应助火星上的柚子采纳,获得10
14分钟前
YOUZI完成签到,获得积分10
14分钟前
15分钟前
15分钟前
15分钟前
火星上的柚子完成签到,获得积分20
15分钟前
啦啦啦完成签到 ,获得积分10
15分钟前
16分钟前
Hello应助科研通管家采纳,获得10
16分钟前
Noob_saibot完成签到,获得积分10
17分钟前
Noob_saibot发布了新的文献求助10
17分钟前
科研通AI2S应助如意歌曲采纳,获得10
18分钟前
festum完成签到,获得积分10
19分钟前
Hasee完成签到 ,获得积分10
19分钟前
19分钟前
Akim应助慢慢的地理人采纳,获得10
20分钟前
cacaldon发布了新的文献求助50
20分钟前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3126163
求助须知:如何正确求助?哪些是违规求助? 2776296
关于积分的说明 7729785
捐赠科研通 2431786
什么是DOI,文献DOI怎么找? 1292236
科研通“疑难数据库(出版商)”最低求助积分说明 622643
版权声明 600408