亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MRI‐Based Machine Learning Radiomics for Preoperative Assessment of Human Epidermal Growth Factor Receptor 2 Status in Urothelial Bladder Carcinoma

Lasso(编程语言) 医学 曼惠特尼U检验 无线电技术 特征选择 接收机工作特性 队列 威尔科克森符号秩检验 机器学习 膀胱癌 卡帕 肿瘤科 人工智能 磁共振成像 算法 放射科 内科学 癌症 计算机科学 数学 万维网 几何学
作者
Ruixi Yu,Lingkai Cai,Yuxi Gong,Xueying Sun,Kai Li,Qiang Cao,Xiao Yang,Qiang Lü
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:60 (6): 2694-2704 被引量:11
标识
DOI:10.1002/jmri.29342
摘要

Background The human epidermal growth factor receptor 2 (HER2) has recently emerged as hotspot in targeted therapy for urothelial bladder cancer (UBC). The HER2 status is mainly identified by immunohistochemistry (IHC), preoperative and noninvasive methods for determining HER2 status in UBC remain in searching. Purposes To investigate whether radiomics features extracted from MRI using machine learning algorithms can noninvasively evaluate the HER2 status in UBC. Study Type Retrospective. Population One hundred ninety‐five patients (age: 68.7 ± 10.5 years) with 14.3% females from January 2019 to May 2023 were divided into training (N = 156) and validation (N = 39) cohorts, and 43 patients (age: 67.1 ± 13.1 years) with 13.9% females from June 2023 to January 2024 constituted the test cohort (N = 43). Field Strength/Sequence 3 T, T2‐weighted imaging (turbo spin‐echo), diffusion‐weighted imaging (breathing‐free spin echo). Assessment The HER2 status were assessed by IHC. Radiomics features were extracted from MRI images. Pearson correlation coefficient and the least absolute shrinkage and selection operator (LASSO) were applied for feature selection, and six machine learning models were established with optimal features to identify the HER2 status in UBC. Statistical Tests Mann–Whitney U ‐test, chi‐square test, LASSO algorithm, receiver operating characteristic analysis, and DeLong test. Results Three thousand forty‐five radiomics features were extracted from each lesion, and 22 features were retained for analysis. The Support Vector Machine model demonstrated the best performance, with an AUC of 0.929 (95% CI: 0.888–0.970) and accuracy of 0.859 in the training cohort, AUC of 0.886 (95% CI: 0.780–0.993) and accuracy of 0.846 in the validation cohort, and AUC of 0.712 (95% CI: 0.535–0.889) and accuracy of 0.744 in the test cohort. Data Conclusion MRI‐based radiomics features combining machine learning algorithm provide a promising approach to assess HER2 status in UBC noninvasively and preoperatively. Evidence Level 2 Technical Efficacy Stage 3
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助豆芽采纳,获得10
4秒前
美美完成签到 ,获得积分10
7秒前
ysjwj关注了科研通微信公众号
11秒前
13秒前
14秒前
15秒前
啊哈发布了新的文献求助10
19秒前
豆芽发布了新的文献求助10
19秒前
zhongbo完成签到,获得积分10
21秒前
taotao发布了新的文献求助10
22秒前
至真至简完成签到,获得积分10
28秒前
simon完成签到 ,获得积分10
36秒前
果称完成签到,获得积分10
41秒前
在水一方完成签到 ,获得积分0
53秒前
章鱼完成签到,获得积分10
1分钟前
sss完成签到,获得积分10
1分钟前
机智书本发布了新的文献求助10
1分钟前
tuanheqi应助S1mon采纳,获得50
1分钟前
Rinsana完成签到,获得积分10
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
1分钟前
余慵慵完成签到 ,获得积分10
1分钟前
1分钟前
Alien发布了新的文献求助10
1分钟前
顺利的愫发布了新的文献求助10
1分钟前
Markov发布了新的文献求助10
1分钟前
Chroninus完成签到,获得积分10
1分钟前
acat完成签到 ,获得积分10
1分钟前
DAI完成签到,获得积分10
2分钟前
范ER完成签到 ,获得积分10
2分钟前
生动的醉薇完成签到,获得积分10
2分钟前
SciGPT应助pp采纳,获得10
2分钟前
涵涵涵hh完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
科研通AI6.2应助顺利的愫采纳,获得10
2分钟前
2分钟前
Flexy发布了新的文献求助10
2分钟前
自由悟空完成签到,获得积分10
2分钟前
lovt123完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
《The Emergency Nursing High-Yield Guide》 (或简称为 Emergency Nursing High-Yield Essentials) 500
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5880422
求助须知:如何正确求助?哪些是违规求助? 6572042
关于积分的说明 15689835
捐赠科研通 5000084
什么是DOI,文献DOI怎么找? 2694202
邀请新用户注册赠送积分活动 1636000
关于科研通互助平台的介绍 1593442