渗透力
离子键合
能量转换
纳米孔
膜
功率密度
反向电渗析
太阳能
化学工程
工作(物理)
纳米技术
材料科学
化学
化学物理
离子
物理
功率(物理)
正渗透
热力学
生物化学
有机化学
生态学
工程类
生物
反渗透
电渗析
作者
Jin Wang,Song Ze-zhou,Miaolu He,Yongchao Qian,Di Wang,Zheng Cui,Yuan Feng,Shangzhen Li,Bo Huang,Xiang‐Yu Kong,Jinming Han,Lei Wang
标识
DOI:10.1038/s41467-024-46439-w
摘要
Abstract Nanofluidic membranes offer exceptional promise for osmotic energy conversion, but the challenge of balancing ionic selectivity and permeability persists. Here, we present a bionic nanofluidic system based on two-dimensional (2D) copper tetra-(4-carboxyphenyl) porphyrin framework (Cu-TCPP). The inherent nanoporous structure and horizontal interlayer channels endow the Cu-TCPP membrane with ultrahigh ion permeability and allow for a power density of 16.64 W m −2 , surpassing state of-the-art nanochannel membranes. Moreover, leveraging the photo-thermal property of Cu-TCPP, light-controlled ion active transport is realized even under natural sunlight. By combining solar energy with salinity gradient, the driving force for ion transport is reinforced, leading to further improvements in energy conversion performance. Notably, light could even eliminate the need for salinity gradient, achieving a power density of 0.82 W m −2 in a symmetric solution system. Our work introduces a new perspective on developing advanced membranes for solar/ionic energy conversion and extends the concept of salinity energy to a notion of ionic energy.
科研通智能强力驱动
Strongly Powered by AbleSci AI