Structure of the Bacterial Cell Envelope and Interactions with Antimicrobials: Insights from Molecular Dynamics Simulations

分子动力学 单元格信封 肽聚糖 细菌外膜 细菌细胞结构 伞式取样 纳米技术 抗菌剂 生物 生物物理学 化学 计算生物学 细菌 细胞壁 材料科学 计算化学 生物化学 微生物学 遗传学 大肠杆菌 基因
作者
Pradyumn Sharma,Rakesh Vaiwala,Amar Krishna Gopinath,Rajalakshmi Chockalingam,K. G. Ayappa
出处
期刊:Langmuir [American Chemical Society]
卷期号:40 (15): 7791-7811 被引量:6
标识
DOI:10.1021/acs.langmuir.3c03474
摘要

Bacteria have evolved over 3 billion years, shaping our intrinsic and symbiotic coexistence with these single-celled organisms. With rising populations of drug-resistant strains, the search for novel antimicrobials is an ongoing area of research. Advances in high-performance computing platforms have led to a variety of molecular dynamics simulation strategies to study the interactions of antimicrobial molecules with different compartments of the bacterial cell envelope of both Gram-positive and Gram-negative species. In this review, we begin with a detailed description of the structural aspects of the bacterial cell envelope. Simulations concerned with the transport and associated free energy of small molecules and ions through the outer membrane, peptidoglycan, inner membrane and outer membrane porins are discussed. Since surfactants are widely used as antimicrobials, a section is devoted to the interactions of surfactants with the cell wall and inner membranes. The review ends with a discussion on antimicrobial peptides and the insights gained from the molecular simulations on the free energy of translocation. Challenges involved in developing accurate molecular models and coarse-grained strategies that provide a trade-off between atomic details with a gain in sampling time are highlighted. The need for efficient sampling strategies to obtain accurate free energies of translocation is also discussed. Molecular dynamics simulations have evolved as a powerful tool that can potentially be used to design and develop novel antimicrobials and strategies to effectively treat bacterial infections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
lijunliang发布了新的文献求助10
2秒前
强砸完成签到,获得积分10
3秒前
xlxl发布了新的文献求助10
3秒前
李爱国应助快乐的曼冬采纳,获得10
3秒前
橘栀完成签到,获得积分10
4秒前
4秒前
博修发布了新的文献求助30
4秒前
WZJ发布了新的文献求助10
4秒前
5秒前
元万天发布了新的文献求助10
5秒前
8R60d8应助根号三采纳,获得10
5秒前
6秒前
Harvey3568发布了新的文献求助10
8秒前
9秒前
正直的夏波关注了科研通微信公众号
9秒前
10秒前
11秒前
znlion完成签到,获得积分10
11秒前
yihuji完成签到 ,获得积分10
11秒前
11秒前
12秒前
gou完成签到,获得积分10
12秒前
奥利安费发布了新的文献求助10
12秒前
wanci应助代代采纳,获得10
12秒前
汉堡包应助小刘采纳,获得10
14秒前
14秒前
在水一方应助婧婧采纳,获得10
14秒前
16秒前
17秒前
研友_VZG7GZ应助野性的曼香采纳,获得10
18秒前
脑洞疼应助yihuji采纳,获得10
18秒前
英吉利25发布了新的文献求助10
19秒前
伊丽娜发布了新的文献求助10
19秒前
20秒前
温水发布了新的文献求助10
20秒前
博修发布了新的文献求助100
21秒前
脑洞疼应助典雅的俊驰采纳,获得10
22秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962670
求助须知:如何正确求助?哪些是违规求助? 3508680
关于积分的说明 11142146
捐赠科研通 3241403
什么是DOI,文献DOI怎么找? 1791539
邀请新用户注册赠送积分活动 872935
科研通“疑难数据库(出版商)”最低求助积分说明 803517