Achieving structurally stable O3-type layered oxide cathodes through site-specific cation-anion co-substitution for sodium-ion batteries

离子 扩散 氧化物 过渡金属 相变 空位缺陷 相(物质) 阴极 材料科学 结构稳定性 兴奋剂 化学 化学工程 纳米技术 结晶学 催化作用 光电子学 冶金 热力学 物理化学 有机化学 生物化学 物理 结构工程 工程类
作者
Yihao Shen,Chen Cheng,Xia Xiao,Lei Wang,Xi Zhou,Pan Zeng,Jianrong Zeng,Liang Zhang
出处
期刊:Journal of Energy Chemistry [Elsevier]
卷期号:93: 411-418 被引量:9
标识
DOI:10.1016/j.jechem.2024.02.040
摘要

O3-type layered oxides have garnered great attention as cathode materials for sodium-ion batteries because of their abundant reserves and high theoretical capacity. However, challenges persist in the form of uncontrollable phase transitions and intricate Na+ diffusion pathways during cycling, resulting in compromised structural stability and reduced capacity over cycles. This study introduces a special approach employing site-specific Ca/F co-substitution within the layered structure of O3-NaNi0.5Mn0.5O2 to effectively address these issues. Herein, the strategically site-specific doping of Ca into Na sites and F into O sites not only expands the Na+ diffusion pathways but also orchestrates a mild phase transition by suppressing the Na+/vacancy ordering and providing strong metal-oxygen bonding strength, respectively. The as-synthesized Na0.95Ca0.05Ni0.5Mn0.5O1.95F0.05 (NNMO-CaF) exhibits a mild O3 → O3+O'3 → P3 phase transition with minimized interlayer distance variation, leading to enhanced structural integrity and stability over extended cycles. As a result, NNMO-CaF delivers a high specific capacity of 119.5 mA h g−1 at a current density of 120 mA g−1 with a capacity retention of 87.1% after 100 cycles. This study presents a promising strategy to mitigate the challenges posed by multiple phase transitions and augment Na+ diffusion kinetics, thus paving the way for high-performance layered cathode materials in sodium-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
阿毛发布了新的文献求助10
1秒前
2秒前
情怀应助灵巧荆采纳,获得10
2秒前
Ll发布了新的文献求助10
2秒前
Peter发布了新的文献求助30
3秒前
3秒前
4秒前
科研韭菜发布了新的文献求助10
4秒前
科研通AI5应助爱学习采纳,获得10
4秒前
科研通AI5应助跳跃的太阳采纳,获得10
4秒前
苏尔琳诺完成签到,获得积分10
4秒前
科研通AI5应助a1oft采纳,获得10
5秒前
5秒前
关关过完成签到,获得积分10
5秒前
呢不辣完成签到,获得积分10
5秒前
5秒前
shi hui应助陈博士采纳,获得10
5秒前
5秒前
糖糖关注了科研通微信公众号
6秒前
6秒前
小恶于完成签到 ,获得积分10
6秒前
科研通AI2S应助落晨采纳,获得10
7秒前
7秒前
8秒前
半颗橙子发布了新的文献求助10
8秒前
小可爱完成签到 ,获得积分10
8秒前
9秒前
10秒前
10秒前
Jiangnj发布了新的文献求助30
10秒前
samantha完成签到,获得积分10
11秒前
11秒前
俎树同完成签到 ,获得积分10
11秒前
Natsu完成签到,获得积分10
11秒前
马保国123发布了新的文献求助10
12秒前
丘比特应助无限的隶采纳,获得10
12秒前
在云里爱与歌完成签到,获得积分10
13秒前
迟大猫应助研究生采纳,获得10
13秒前
可行完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762