热力学
焓
材料科学
熔点
吉布斯自由能
相图
金属
化学稳定性
熵(时间箭头)
混合焓
结构稳定性
标准生成焓
混合熵
过渡金属
冶金
化学
相(物质)
物理
有机化学
结构工程
工程类
复合材料
生物化学
催化作用
作者
Huilun Zhang,Shiyu Liu,Shiyang Liu,Dejun Li,Yanyu Liu,Sanwu Wang
标识
DOI:10.1088/1361-648x/ad15c6
摘要
By combining first-principles density-functional calculations and thermodynamics, we investigated the thermodynamic stability and mechanical properties of 15 quaternary high-entropy metal disilicides composed of silicon and four of the six refractory transition metals Ti, Zr, Hf, V, Nb, and Ta. We constructed a three-dimensional diagram specified by two thermodynamic parameters (the mixing enthalpy and the ratio of the entropy term in the Gibbs free energy to enthalpy) and a structural parameter (the lattice size difference). The obtained diagram allows us to predict that, except for TiZrHfVSi8, the formation of all other fourteen single-phase metal disilicides is thermodynamically favorable. Our calculations show that, for the formation of each of the 14 metal disilicides, the driving force suppresses the resistance at temperatures well below the melting point, suggesting that it is feasible to synthesize these high-entropy materials. One of these (TiHfNbTaSi8) has already been experimentally realized. Furthermore, the values of the mechanical parameters and melting points of the predicted fourteen quaternary high-entropy metal disilicides are all greater than the corresponding average values of the four single-metal disilicides.
科研通智能强力驱动
Strongly Powered by AbleSci AI