A novel Android malware detection method with API semantics extraction

计算机科学 恶意软件 Android恶意软件 聚类分析 Android(操作系统) 人工智能 恶意软件分析 调用图 图形 机器学习 数据挖掘 程序设计语言 理论计算机科学 操作系统
作者
Hongyu Yang,Youwei Wang,Liang Zhang,Xiang Cheng,Ze Hu
出处
期刊:Computers & Security [Elsevier BV]
卷期号:137: 103651-103651 被引量:13
标识
DOI:10.1016/j.cose.2023.103651
摘要

Due to the continuous evolution of both the Android framework and malware, conventional malware detection methods that have been trained using outdated apps are inadequate in effectively identifying sophisticated evolved malware. To address this issue, in this paper, we propose a novel Android malware detection method with API semantics extraction (AMDASE), it can effectively identify evolved malware instances. Firstly, AMDASE performs API clustering to obtain cluster centers representing API functions before malware detection. We design API sentence to summarize API features and employ natural language processing (NLP) tools to acquire embeddings of API sentence for clustering. With the help of API sentence, it becomes possible to effectively extract the semantics of API contained in features like method name that accurately represents its intended functionality, which also makes the clustering results more accurate. Secondly, AMDASE extracts call graph from each app and optimizes the call graph by removing nodes corresponding to unknown functions, while ensuring the preservation of connectivity between their predecessor and successor nodes. The optimized call graph can extract more robust API contextual information that accurately represents the behavior of each app. Thirdly, in order to maintain resilience against the evolution of Android malware, AMDASE extracts function call pairs from the optimized call graph and abstracts the APIs in function call pairs into cluster centers obtained in API clustering. Finally, feature vectors are generated using one-hot mapping and machine learning classifiers are used for malware detection. We evaluate AMDASE on a dataset of 42,154 benign and 42,450 malicious apps developed over a seven-year period. The experimental results demonstrate that AMDASE greatly outperforms the existing state-of-the-art methods and has a significantly slower aging speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wualexandra发布了新的文献求助10
2秒前
CodeCraft应助师志博采纳,获得10
3秒前
3秒前
田様应助molo采纳,获得10
5秒前
Leo发布了新的文献求助10
5秒前
7秒前
10秒前
乐乐应助见青山采纳,获得10
11秒前
四羟基合铝酸钾完成签到,获得积分10
11秒前
喵呜发布了新的文献求助10
11秒前
心灵美的山蝶完成签到,获得积分10
13秒前
深情秋刀鱼完成签到,获得积分10
14秒前
14秒前
清脆的从灵完成签到,获得积分10
15秒前
科研通AI5应助hhh采纳,获得10
15秒前
Eve完成签到,获得积分20
16秒前
可爱的函函应助黄鱼采纳,获得10
16秒前
yout发布了新的文献求助30
17秒前
伶俐乐曲完成签到,获得积分10
19秒前
20秒前
20秒前
20秒前
锅锅发布了新的文献求助10
21秒前
zyh关闭了zyh文献求助
21秒前
21秒前
小杰杰应助梦花结采纳,获得10
24秒前
叮叮当当完成签到,获得积分10
25秒前
燃烧地方完成签到,获得积分20
25秒前
充电宝应助HHH采纳,获得10
25秒前
Jasper应助伶俐夏岚采纳,获得10
26秒前
27秒前
27秒前
小李老博应助科研通管家采纳,获得10
29秒前
小二郎应助科研通管家采纳,获得10
29秒前
SYLH应助科研通管家采纳,获得10
29秒前
科目三应助科研通管家采纳,获得10
29秒前
29秒前
桐桐应助科研通管家采纳,获得10
29秒前
打打应助科研通管家采纳,获得10
29秒前
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745005
求助须知:如何正确求助?哪些是违规求助? 3287963
关于积分的说明 10056553
捐赠科研通 3004141
什么是DOI,文献DOI怎么找? 1649480
邀请新用户注册赠送积分活动 785342
科研通“疑难数据库(出版商)”最低求助积分说明 751049