A Hierarchy-driven Multi-label Network with Label Constraints for Post-operative Complication Prediction of Lung Cancer*

肺癌 等级制度 并发症 计算机科学 正规化(语言学) 人工智能 机器学习 医学 外科 肿瘤科 经济 市场经济
作者
Danqing Hu,Bing Liu,Xiang Li,Hui Chen,Rui Guo,Lechao Cheng,Xudong Lü,Nan Wu
标识
DOI:10.1109/embc40787.2023.10339943
摘要

Lung cancer is one of the most dangerous cancers all over the world. Surgical resection remains the only potentially curative option for patients with lung cancer. However, this invasive treatment often causes various complications, which seriously endanger patient health. In this study, we proposed a novel multi-label network, namely a hierarchy-driven multi-label network with label constraints (HDMN-LC), to predict the risk of complications of lung cancer patients. In this method, we first divided all complications into pulmonary and cardiovascular complication groups and employed the hierarchical cluster algorithm to analyze the hierarchies between these complications. After that, we employed the hierarchies to drive the network architecture design so that related complications could share more hidden features. And then, we combined all complications and employed an auxiliary task to predict whether any complications would occur to impose the bottom layer to learn general features. Finally, we proposed a regularization term to constrain the relationship between specific and combined complication labels to improve performance. We conducted extensive experiments on real clinical data of 593 patients. Experimental results indicate that the proposed method outperforms the single-label, multi-label baseline methods, with an average AUC value of 0.653. And the results also prove the effectiveness of hierarchy-driven network architecture and label constraints. We conclude that the proposed method can predict complications for lung cancer patients more effectively than the baseline methods.Clinical relevance—This study presents a novel multi-label network that can more accurately predict the risk of specific postoperative complications for lung cancer patients. The method can help clinicians identify high-risk patients more accurately and timely so that interventions can be implemented in advance to ensure patient safety

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
热心傲珊发布了新的文献求助10
1秒前
culiucabbage发布了新的文献求助10
1秒前
ppyyg完成签到,获得积分10
2秒前
2秒前
BowieHuang应助ru采纳,获得10
2秒前
纳米完成签到,获得积分10
3秒前
香蕉觅云应助林琳采纳,获得10
3秒前
不敢自称科研人完成签到,获得积分10
4秒前
4秒前
快乐寄风发布了新的文献求助10
7秒前
小二郎应助NPC采纳,获得10
7秒前
gone完成签到,获得积分10
8秒前
9秒前
害羞的振家完成签到,获得积分10
9秒前
可悲的科研狗完成签到,获得积分10
10秒前
pcm完成签到 ,获得积分10
10秒前
无花果应助王小敏敏儿采纳,获得10
10秒前
10秒前
所所应助看文献的韩章浅采纳,获得10
11秒前
12秒前
13秒前
nana发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
FashionBoy应助sff采纳,获得10
17秒前
18秒前
19秒前
Qiao发布了新的文献求助10
19秒前
蓝橙完成签到,获得积分10
20秒前
CodeCraft应助qq158014169采纳,获得10
20秒前
小化发布了新的文献求助10
21秒前
领导范儿应助灿灿采纳,获得30
22秒前
Mic应助ning采纳,获得10
22秒前
22秒前
23秒前
无私鹰完成签到,获得积分10
23秒前
充电宝应助nana采纳,获得10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589801
求助须知:如何正确求助?哪些是违规求助? 4674367
关于积分的说明 14793421
捐赠科研通 4629109
什么是DOI,文献DOI怎么找? 2532421
邀请新用户注册赠送积分活动 1501070
关于科研通互助平台的介绍 1468487