A Hierarchy-driven Multi-label Network with Label Constraints for Post-operative Complication Prediction of Lung Cancer*

肺癌 等级制度 并发症 计算机科学 正规化(语言学) 人工智能 机器学习 医学 外科 肿瘤科 经济 市场经济
作者
Danqing Hu,Bing Liu,Xiang Li,Hui Chen,Rui Guo,Lechao Cheng,Xudong Lü,Nan Wu
标识
DOI:10.1109/embc40787.2023.10339943
摘要

Lung cancer is one of the most dangerous cancers all over the world. Surgical resection remains the only potentially curative option for patients with lung cancer. However, this invasive treatment often causes various complications, which seriously endanger patient health. In this study, we proposed a novel multi-label network, namely a hierarchy-driven multi-label network with label constraints (HDMN-LC), to predict the risk of complications of lung cancer patients. In this method, we first divided all complications into pulmonary and cardiovascular complication groups and employed the hierarchical cluster algorithm to analyze the hierarchies between these complications. After that, we employed the hierarchies to drive the network architecture design so that related complications could share more hidden features. And then, we combined all complications and employed an auxiliary task to predict whether any complications would occur to impose the bottom layer to learn general features. Finally, we proposed a regularization term to constrain the relationship between specific and combined complication labels to improve performance. We conducted extensive experiments on real clinical data of 593 patients. Experimental results indicate that the proposed method outperforms the single-label, multi-label baseline methods, with an average AUC value of 0.653. And the results also prove the effectiveness of hierarchy-driven network architecture and label constraints. We conclude that the proposed method can predict complications for lung cancer patients more effectively than the baseline methods.Clinical relevance—This study presents a novel multi-label network that can more accurately predict the risk of specific postoperative complications for lung cancer patients. The method can help clinicians identify high-risk patients more accurately and timely so that interventions can be implemented in advance to ensure patient safety

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Lucas应助Champion采纳,获得10
1秒前
有个女孩叫阿娇完成签到,获得积分10
1秒前
丰富以亦发布了新的文献求助10
2秒前
李爱国应助zzzz采纳,获得10
2秒前
xinxin0902应助研狗采纳,获得20
2秒前
2秒前
古人说发布了新的文献求助20
2秒前
yaya发布了新的文献求助10
3秒前
3秒前
Akim应助Atalent采纳,获得10
3秒前
英姑应助千衷采纳,获得10
3秒前
ppat5012完成签到,获得积分10
3秒前
美味肉蟹煲完成签到,获得积分10
4秒前
歪比巴卜发布了新的文献求助10
4秒前
4秒前
4秒前
DEF完成签到 ,获得积分10
4秒前
zero完成签到,获得积分10
4秒前
传奇3应助池林采纳,获得10
4秒前
钟馗完成签到,获得积分10
4秒前
搞科研的废废完成签到,获得积分10
4秒前
白板发布了新的文献求助20
4秒前
4秒前
5秒前
5秒前
酷波er应助温柔的戎采纳,获得10
5秒前
Duang完成签到,获得积分20
5秒前
5秒前
柒月发布了新的文献求助10
5秒前
5秒前
朴素友安完成签到 ,获得积分10
5秒前
5秒前
bkagyin应助Linming采纳,获得10
6秒前
饱满的煎饼完成签到,获得积分10
6秒前
8秒前
8秒前
8秒前
fff完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506056
求助须知:如何正确求助?哪些是违规求助? 4601542
关于积分的说明 14477374
捐赠科研通 4535544
什么是DOI,文献DOI怎么找? 2485440
邀请新用户注册赠送积分活动 1468399
关于科研通互助平台的介绍 1440887