A Hierarchy-driven Multi-label Network with Label Constraints for Post-operative Complication Prediction of Lung Cancer*

肺癌 等级制度 并发症 计算机科学 正规化(语言学) 人工智能 机器学习 医学 外科 肿瘤科 经济 市场经济
作者
Danqing Hu,Bing Liu,Xiang Li,Hui Chen,Rui Guo,Lechao Cheng,Xudong Lü,Nan Wu
标识
DOI:10.1109/embc40787.2023.10339943
摘要

Lung cancer is one of the most dangerous cancers all over the world. Surgical resection remains the only potentially curative option for patients with lung cancer. However, this invasive treatment often causes various complications, which seriously endanger patient health. In this study, we proposed a novel multi-label network, namely a hierarchy-driven multi-label network with label constraints (HDMN-LC), to predict the risk of complications of lung cancer patients. In this method, we first divided all complications into pulmonary and cardiovascular complication groups and employed the hierarchical cluster algorithm to analyze the hierarchies between these complications. After that, we employed the hierarchies to drive the network architecture design so that related complications could share more hidden features. And then, we combined all complications and employed an auxiliary task to predict whether any complications would occur to impose the bottom layer to learn general features. Finally, we proposed a regularization term to constrain the relationship between specific and combined complication labels to improve performance. We conducted extensive experiments on real clinical data of 593 patients. Experimental results indicate that the proposed method outperforms the single-label, multi-label baseline methods, with an average AUC value of 0.653. And the results also prove the effectiveness of hierarchy-driven network architecture and label constraints. We conclude that the proposed method can predict complications for lung cancer patients more effectively than the baseline methods.Clinical relevance—This study presents a novel multi-label network that can more accurately predict the risk of specific postoperative complications for lung cancer patients. The method can help clinicians identify high-risk patients more accurately and timely so that interventions can be implemented in advance to ensure patient safety
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助感动归尘采纳,获得10
刚刚
南栀倾寒完成签到,获得积分10
刚刚
。.。发布了新的文献求助10
刚刚
1秒前
传奇3应助学术地瓜采纳,获得10
1秒前
文风杰采完成签到,获得积分10
1秒前
霸气的依秋完成签到,获得积分20
1秒前
rui发布了新的文献求助10
1秒前
1秒前
传奇3应助眼睛大的尔蝶采纳,获得10
1秒前
hk发布了新的文献求助30
1秒前
哄哄完成签到,获得积分10
2秒前
2秒前
kkkkkkk_发布了新的文献求助10
3秒前
Ceres完成签到,获得积分20
4秒前
4秒前
棒子面糊糊完成签到,获得积分10
5秒前
老实外绣发布了新的文献求助10
6秒前
wanci应助平常的四娘采纳,获得10
7秒前
jevon应助附子硫磺采纳,获得10
8秒前
GGZ完成签到,获得积分10
8秒前
8秒前
8秒前
踏雪无痕6509完成签到,获得积分10
8秒前
9秒前
9秒前
jevon应助星辰采纳,获得10
9秒前
CC发布了新的文献求助10
9秒前
大模型应助CY采纳,获得10
9秒前
帅哥吴克完成签到,获得积分10
10秒前
11秒前
伊饭完成签到 ,获得积分10
12秒前
小白发布了新的文献求助10
12秒前
酷波er应助拓跋涵易采纳,获得10
13秒前
14秒前
搜集达人应助林黛玉采纳,获得10
14秒前
15秒前
15秒前
jevon应助育三杯清栀采纳,获得10
16秒前
jia发布了新的文献求助10
16秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233472
求助须知:如何正确求助?哪些是违规求助? 2880022
关于积分的说明 8213600
捐赠科研通 2547449
什么是DOI,文献DOI怎么找? 1376954
科研通“疑难数据库(出版商)”最低求助积分说明 647713
邀请新用户注册赠送积分活动 623154