A Hierarchy-driven Multi-label Network with Label Constraints for Post-operative Complication Prediction of Lung Cancer*

肺癌 等级制度 并发症 计算机科学 正规化(语言学) 人工智能 机器学习 医学 外科 肿瘤科 经济 市场经济
作者
Danqing Hu,Bing Liu,Xiang Li,Hui Chen,Rui Guo,Lechao Cheng,Xudong Lü,Nan Wu
标识
DOI:10.1109/embc40787.2023.10339943
摘要

Lung cancer is one of the most dangerous cancers all over the world. Surgical resection remains the only potentially curative option for patients with lung cancer. However, this invasive treatment often causes various complications, which seriously endanger patient health. In this study, we proposed a novel multi-label network, namely a hierarchy-driven multi-label network with label constraints (HDMN-LC), to predict the risk of complications of lung cancer patients. In this method, we first divided all complications into pulmonary and cardiovascular complication groups and employed the hierarchical cluster algorithm to analyze the hierarchies between these complications. After that, we employed the hierarchies to drive the network architecture design so that related complications could share more hidden features. And then, we combined all complications and employed an auxiliary task to predict whether any complications would occur to impose the bottom layer to learn general features. Finally, we proposed a regularization term to constrain the relationship between specific and combined complication labels to improve performance. We conducted extensive experiments on real clinical data of 593 patients. Experimental results indicate that the proposed method outperforms the single-label, multi-label baseline methods, with an average AUC value of 0.653. And the results also prove the effectiveness of hierarchy-driven network architecture and label constraints. We conclude that the proposed method can predict complications for lung cancer patients more effectively than the baseline methods.Clinical relevance—This study presents a novel multi-label network that can more accurately predict the risk of specific postoperative complications for lung cancer patients. The method can help clinicians identify high-risk patients more accurately and timely so that interventions can be implemented in advance to ensure patient safety
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
聚光灯下完成签到,获得积分10
2秒前
white完成签到,获得积分10
2秒前
WEILAI完成签到,获得积分10
2秒前
研友_VZG7GZ应助任性归尘采纳,获得10
2秒前
小强x完成签到,获得积分10
3秒前
3秒前
十一十八应助来日方长采纳,获得10
3秒前
3秒前
学学完成签到,获得积分10
3秒前
ding应助包子采纳,获得10
3秒前
3秒前
3秒前
4秒前
77完成签到,获得积分10
4秒前
忐忑的远山完成签到,获得积分10
5秒前
胖子完成签到,获得积分10
5秒前
6秒前
TWT完成签到,获得积分10
6秒前
牛肉汉堡完成签到,获得积分10
6秒前
自觉士萧完成签到,获得积分10
6秒前
Felix发布了新的文献求助10
7秒前
玉鱼儿完成签到 ,获得积分10
7秒前
ak完成签到,获得积分10
9秒前
gao发布了新的文献求助10
10秒前
徐xmr完成签到,获得积分10
10秒前
minus完成签到,获得积分10
11秒前
maaicui完成签到,获得积分10
11秒前
五十完成签到,获得积分10
11秒前
英勇夜绿发布了新的文献求助10
11秒前
时尚的初柔完成签到,获得积分10
11秒前
高挑的小蕊完成签到,获得积分10
12秒前
huifang完成签到,获得积分10
12秒前
12秒前
怡然的烤鸡完成签到,获得积分10
12秒前
摸鱼校尉完成签到,获得积分0
12秒前
开朗的山彤完成签到,获得积分10
13秒前
Amber完成签到,获得积分10
13秒前
SYLH应助ernest采纳,获得30
13秒前
Rr完成签到,获得积分10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968719
求助须知:如何正确求助?哪些是违规求助? 3513608
关于积分的说明 11168681
捐赠科研通 3248960
什么是DOI,文献DOI怎么找? 1794573
邀请新用户注册赠送积分活动 875194
科研通“疑难数据库(出版商)”最低求助积分说明 804716