已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Hierarchy-driven Multi-label Network with Label Constraints for Post-operative Complication Prediction of Lung Cancer*

肺癌 等级制度 并发症 计算机科学 正规化(语言学) 人工智能 机器学习 医学 外科 肿瘤科 经济 市场经济
作者
Danqing Hu,Bing Liu,Xiang Li,Hui Chen,Rui Guo,Lechao Cheng,Xudong Lü,Nan Wu
标识
DOI:10.1109/embc40787.2023.10339943
摘要

Lung cancer is one of the most dangerous cancers all over the world. Surgical resection remains the only potentially curative option for patients with lung cancer. However, this invasive treatment often causes various complications, which seriously endanger patient health. In this study, we proposed a novel multi-label network, namely a hierarchy-driven multi-label network with label constraints (HDMN-LC), to predict the risk of complications of lung cancer patients. In this method, we first divided all complications into pulmonary and cardiovascular complication groups and employed the hierarchical cluster algorithm to analyze the hierarchies between these complications. After that, we employed the hierarchies to drive the network architecture design so that related complications could share more hidden features. And then, we combined all complications and employed an auxiliary task to predict whether any complications would occur to impose the bottom layer to learn general features. Finally, we proposed a regularization term to constrain the relationship between specific and combined complication labels to improve performance. We conducted extensive experiments on real clinical data of 593 patients. Experimental results indicate that the proposed method outperforms the single-label, multi-label baseline methods, with an average AUC value of 0.653. And the results also prove the effectiveness of hierarchy-driven network architecture and label constraints. We conclude that the proposed method can predict complications for lung cancer patients more effectively than the baseline methods.Clinical relevance—This study presents a novel multi-label network that can more accurately predict the risk of specific postoperative complications for lung cancer patients. The method can help clinicians identify high-risk patients more accurately and timely so that interventions can be implemented in advance to ensure patient safety
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
传奇3应助hygge采纳,获得10
3秒前
3秒前
4秒前
4秒前
caoyonggang发布了新的文献求助10
5秒前
馆长给开心的访卉的求助进行了留言
5秒前
puppy发布了新的文献求助10
7秒前
科研通AI6应助嘛吉采纳,获得10
9秒前
9秒前
科研通AI6应助优雅的帅哥采纳,获得10
9秒前
小小牛马完成签到 ,获得积分10
11秒前
11秒前
12秒前
陈小白完成签到,获得积分10
12秒前
13秒前
ltttaaaa发布了新的文献求助10
13秒前
陆旻发布了新的文献求助10
14秒前
小小鹅发布了新的文献求助10
14秒前
tangtang发布了新的文献求助10
14秒前
幸运的姜姜完成签到 ,获得积分10
14秒前
科研民工李完成签到,获得积分10
17秒前
19秒前
20秒前
小小牛马关注了科研通微信公众号
20秒前
22秒前
22秒前
执着无声完成签到 ,获得积分10
26秒前
26秒前
27秒前
隐形曼青应助ranj采纳,获得10
28秒前
科研通AI2S应助worrywar采纳,获得10
31秒前
明月清风发布了新的文献求助10
35秒前
幽默枫发布了新的文献求助10
35秒前
清爽的曼易完成签到,获得积分10
36秒前
37秒前
white完成签到 ,获得积分10
40秒前
40秒前
42秒前
大方的星星完成签到,获得积分10
43秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5126032
求助须知:如何正确求助?哪些是违规求助? 4329689
关于积分的说明 13491683
捐赠科研通 4164660
什么是DOI,文献DOI怎么找? 2283026
邀请新用户注册赠送积分活动 1284135
关于科研通互助平台的介绍 1223522