已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Hierarchy-driven Multi-label Network with Label Constraints for Post-operative Complication Prediction of Lung Cancer*

肺癌 等级制度 并发症 计算机科学 正规化(语言学) 人工智能 机器学习 医学 外科 肿瘤科 经济 市场经济
作者
Danqing Hu,Bing Liu,Xiang Li,Hui Chen,Rui Guo,Lechao Cheng,Xudong Lü,Nan Wu
标识
DOI:10.1109/embc40787.2023.10339943
摘要

Lung cancer is one of the most dangerous cancers all over the world. Surgical resection remains the only potentially curative option for patients with lung cancer. However, this invasive treatment often causes various complications, which seriously endanger patient health. In this study, we proposed a novel multi-label network, namely a hierarchy-driven multi-label network with label constraints (HDMN-LC), to predict the risk of complications of lung cancer patients. In this method, we first divided all complications into pulmonary and cardiovascular complication groups and employed the hierarchical cluster algorithm to analyze the hierarchies between these complications. After that, we employed the hierarchies to drive the network architecture design so that related complications could share more hidden features. And then, we combined all complications and employed an auxiliary task to predict whether any complications would occur to impose the bottom layer to learn general features. Finally, we proposed a regularization term to constrain the relationship between specific and combined complication labels to improve performance. We conducted extensive experiments on real clinical data of 593 patients. Experimental results indicate that the proposed method outperforms the single-label, multi-label baseline methods, with an average AUC value of 0.653. And the results also prove the effectiveness of hierarchy-driven network architecture and label constraints. We conclude that the proposed method can predict complications for lung cancer patients more effectively than the baseline methods.Clinical relevance—This study presents a novel multi-label network that can more accurately predict the risk of specific postoperative complications for lung cancer patients. The method can help clinicians identify high-risk patients more accurately and timely so that interventions can be implemented in advance to ensure patient safety
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洁净雨柏完成签到,获得积分10
1秒前
朴素的紫安完成签到 ,获得积分10
1秒前
舒适静丹完成签到,获得积分10
1秒前
SASI完成签到 ,获得积分10
3秒前
舒适静丹发布了新的文献求助10
3秒前
科研通AI5应助彼岸花开采纳,获得50
7秒前
仙乐完成签到,获得积分10
9秒前
笨笨的荧荧完成签到 ,获得积分10
11秒前
13秒前
醉熏的荣轩完成签到 ,获得积分10
16秒前
落羽发布了新的文献求助10
18秒前
豆子应助SASI采纳,获得20
18秒前
19秒前
喬老師完成签到,获得积分10
19秒前
落羽完成签到,获得积分10
24秒前
牛奶拌可乐完成签到 ,获得积分10
25秒前
漂亮采波发布了新的文献求助10
26秒前
joanna完成签到,获得积分10
29秒前
Vincent1990完成签到,获得积分10
30秒前
zcc111完成签到,获得积分10
33秒前
34秒前
贪玩的蝴蝶完成签到 ,获得积分10
37秒前
凌七发布了新的文献求助10
37秒前
Kevin完成签到,获得积分10
40秒前
wbs13521完成签到,获得积分0
42秒前
Ava应助宁紫涵采纳,获得10
43秒前
陈陈完成签到,获得积分10
45秒前
Jasper应助哈哈哈哈采纳,获得10
50秒前
52秒前
CHSLN完成签到 ,获得积分10
52秒前
谨慎秋珊完成签到 ,获得积分10
1分钟前
Crrr完成签到,获得积分10
1分钟前
1分钟前
1分钟前
明水发布了新的文献求助10
1分钟前
江洋大盗发布了新的文献求助10
1分钟前
哈哈哈哈发布了新的文献求助10
1分钟前
故意的睫毛膏完成签到 ,获得积分10
1分钟前
鲤鱼绮山完成签到 ,获得积分10
1分钟前
张西西完成签到 ,获得积分10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976600
求助须知:如何正确求助?哪些是违规求助? 3520674
关于积分的说明 11204470
捐赠科研通 3257316
什么是DOI,文献DOI怎么找? 1798683
邀请新用户注册赠送积分活动 877861
科研通“疑难数据库(出版商)”最低求助积分说明 806595