覆盖层
材料科学
光电流
分解水
电解质
纳米技术
兴奋剂
载流子
化学工程
电极
光电子学
光催化
化学
物理化学
生物化学
工程类
催化作用
作者
Tae Sik Koh,Periyasamy Anushkkaran,Love Kumar Dhandole,Mahadeo A. Mahadik,Weon‐Sik Chae,Hyun Hwi Lee,Sun Hee Choi,Jum Suk Jang
标识
DOI:10.1016/j.jechem.2023.12.001
摘要
Hematite (α-Fe2O3) based photoanodes have been extensively studied due to various intriguing features that make them viable candidates for a photoelectrochemical (PEC) water splitting photoanode. Herein, we propose a Zr-doped Fe2O3 photoanode decorated with facilely spin-coated Au nanoparticles (NPs) and microwave-assisted attached Si co-doping in conjunction with a SiOx overlayer that displayed a remarkable photocurrent density of 2.01 mA/cm2 at 1.23 V vs. RHE. The kinetic dynamics at the photoelectrode/electrolyte interface was examined by employing systematic electrochemical investigations. The Au NPs played a dual role in increasing PEC water splitting. First, the Schottky interface that was formed between Au NPs and Zr-Fe2O3 electrode ensured the prevention of electron flow from the photoanode to the metal, increasing the number of available charges as well as suppressing surface charge recombination. Second, Au extracted photoholes from the bulk of the Zr-Fe2O3 and transported them to the outer SiOx overlayer, while the SiOx overlayer efficiently collected the photoholes and promoted the hole injection into the electrolyte. Further, Si co-doping enhanced bulk conductivity by reducing bulk charge transfer resistance and improving charge carrier density. This study outlines a technique to design a metallic charge transfer path with an overlayer for solar energy conversion.
科研通智能强力驱动
Strongly Powered by AbleSci AI