High discharge energy density in rationally designed graphene oxide@zinc oxide/polymer blend-polyetherimide heterostructured bilayer nanocomposites

聚醚酰亚胺 材料科学 纳米复合材料 电介质 石墨烯 复合材料 聚合物纳米复合材料 聚合物 氧化物 化学工程 纳米技术 光电子学 工程类 冶金
作者
Mohsin Ali Marwat,Haibo Zhang,Muhammad Humayun,Bing Xie,Malik Ashtar,M. Bououdina,Muneeb U. Rehman,Shaheer Ishfaq
出处
期刊:Journal of energy storage [Elsevier]
卷期号:79: 110125-110125 被引量:5
标识
DOI:10.1016/j.est.2023.110125
摘要

The advancement of new dielectric materials exhibiting greater discharge energy density is crucial for current power systems and electronic devices. In this work, various weight percentages of graphene oxide@zinc oxide (GO@ZO) nanofillers were incorporated inside a polymer blend of poly(vinylidene fluoride-hexafluoropropylene)/polyetherimide (P(VDF-HFP)/PEI; shortened as BP) and used as a high dielectric top layer. In contrast, linear-type PEI (L) was used as a bottom insulation layer to achieve a high breakdown strength (Eb) in bilayer nanocomposites. As a result, the 2BP-L composite demonstrated a high discharged energy density of 12.63 J/cm3 at an electric field of 527 MV/m with only 2 wt% GO@ZO nanofillers addition in the top layer. Such a high discharge energy density with minimal nanofiller loading is attributed to the utilization of novel surface-decorated GO@ZO nanofillers and new bilayer-heterostructured linear/ferroelectric-linear polymer. In comparison to its counterparts (i.e., PEI, P(VDF-HFP) and 0BP-L), the 2BP-L nanocomposite showed ∼426.3 %, 92.5 %, and 9.8 % enhancement in discharge energy density, respectively. The discharge rate and stability analysis revealed a significantly higher power density of 0.55 MW/cm3, indicating its high potential to be used as a pulsed power system. Finite element simulation revealed that the effective internal electric field distribution and higher dielectric displacement in 2BP-L resulted in such enhancement over its counterparts. This study presents a new model to maximize the energy storage capability of flexible energy storage devices and advances knowledge of the polarization mechanisms and breakdown of bilayer nanocomposite dielectric materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
drizzling发布了新的文献求助10
刚刚
平淡南松完成签到,获得积分10
1秒前
研友_ED5GK完成签到,获得积分0
1秒前
舒适豌豆发布了新的文献求助10
1秒前
2秒前
生动的雨竹完成签到,获得积分10
2秒前
2秒前
啦啦啦完成签到,获得积分20
3秒前
silentJeremy完成签到,获得积分10
3秒前
3秒前
WNL发布了新的文献求助10
3秒前
4秒前
4秒前
玉yu完成签到 ,获得积分10
4秒前
嗯呢完成签到 ,获得积分10
4秒前
4秒前
5秒前
5秒前
6秒前
跳跃难胜发布了新的文献求助10
6秒前
大脸妹完成签到,获得积分10
6秒前
愤怒的源智完成签到 ,获得积分10
7秒前
7秒前
7秒前
ganson完成签到 ,获得积分10
7秒前
7秒前
HopeStar发布了新的文献求助10
8秒前
8秒前
bkagyin应助YL采纳,获得10
9秒前
共享精神应助一直采纳,获得10
9秒前
10秒前
无聊先知完成签到,获得积分10
10秒前
传奇3应助CC采纳,获得10
10秒前
Promise发布了新的文献求助10
10秒前
习习发布了新的文献求助100
11秒前
11秒前
12秒前
someone完成签到,获得积分10
12秒前
12秒前
wanyanjin应助南方姑娘采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678