High discharge energy density in rationally designed graphene oxide@zinc oxide/polymer blend-polyetherimide heterostructured bilayer nanocomposites

聚醚酰亚胺 材料科学 纳米复合材料 电介质 石墨烯 复合材料 聚合物纳米复合材料 聚合物 氧化物 化学工程 纳米技术 光电子学 工程类 冶金
作者
Mohsin Ali Marwat,Haibo Zhang,Muhammad Humayun,Bing Xie,Malik Ashtar,M. Bououdina,Muneeb U. Rehman,Shaheer Ishfaq
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:79: 110125-110125 被引量:5
标识
DOI:10.1016/j.est.2023.110125
摘要

The advancement of new dielectric materials exhibiting greater discharge energy density is crucial for current power systems and electronic devices. In this work, various weight percentages of graphene oxide@zinc oxide (GO@ZO) nanofillers were incorporated inside a polymer blend of poly(vinylidene fluoride-hexafluoropropylene)/polyetherimide (P(VDF-HFP)/PEI; shortened as BP) and used as a high dielectric top layer. In contrast, linear-type PEI (L) was used as a bottom insulation layer to achieve a high breakdown strength (Eb) in bilayer nanocomposites. As a result, the 2BP-L composite demonstrated a high discharged energy density of 12.63 J/cm3 at an electric field of 527 MV/m with only 2 wt% GO@ZO nanofillers addition in the top layer. Such a high discharge energy density with minimal nanofiller loading is attributed to the utilization of novel surface-decorated GO@ZO nanofillers and new bilayer-heterostructured linear/ferroelectric-linear polymer. In comparison to its counterparts (i.e., PEI, P(VDF-HFP) and 0BP-L), the 2BP-L nanocomposite showed ∼426.3 %, 92.5 %, and 9.8 % enhancement in discharge energy density, respectively. The discharge rate and stability analysis revealed a significantly higher power density of 0.55 MW/cm3, indicating its high potential to be used as a pulsed power system. Finite element simulation revealed that the effective internal electric field distribution and higher dielectric displacement in 2BP-L resulted in such enhancement over its counterparts. This study presents a new model to maximize the energy storage capability of flexible energy storage devices and advances knowledge of the polarization mechanisms and breakdown of bilayer nanocomposite dielectric materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玖文发布了新的文献求助10
1秒前
佳佳应助向美而死采纳,获得10
3秒前
4秒前
5秒前
6秒前
木柟完成签到,获得积分10
6秒前
Bear完成签到 ,获得积分10
7秒前
玖文完成签到,获得积分10
7秒前
彭于晏应助专注乌冬面采纳,获得10
9秒前
9秒前
云氲完成签到 ,获得积分10
9秒前
tangz完成签到,获得积分20
10秒前
10秒前
11秒前
含蓄元冬发布了新的文献求助10
11秒前
11秒前
iNk应助秀丽笑容采纳,获得20
13秒前
keeno完成签到,获得积分10
14秒前
所所应助ccc采纳,获得10
14秒前
Jeriu发布了新的文献求助10
15秒前
小蘑菇应助tangz采纳,获得10
15秒前
香蕉觅云应助夜雨听风眠z采纳,获得10
16秒前
18秒前
安详凡发布了新的文献求助10
20秒前
Jeriu完成签到,获得积分10
20秒前
wudi19887发布了新的文献求助10
24秒前
24秒前
ED应助科研通管家采纳,获得10
24秒前
思源应助科研通管家采纳,获得10
24秒前
桐桐应助科研通管家采纳,获得10
24秒前
打打应助科研通管家采纳,获得10
24秒前
CodeCraft应助科研通管家采纳,获得10
24秒前
只A不B应助科研通管家采纳,获得10
24秒前
乐乐应助科研通管家采纳,获得10
25秒前
Akim应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
25秒前
华仔应助科研通管家采纳,获得10
25秒前
JamesPei应助科研通管家采纳,获得30
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966388
求助须知:如何正确求助?哪些是违规求助? 3511817
关于积分的说明 11160082
捐赠科研通 3246443
什么是DOI,文献DOI怎么找? 1793422
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388