清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine learning for layer-by-layer nanofiltration membrane performance prediction and polymer candidate exploration

纳滤 图层(电子) 聚合物 材料科学 化学工程 化学 工程类 纳米技术 复合材料 生物化学
作者
Chen Wang,Li Wang,Hanwei Yu,Allan Soo,Zhining Wang,Saeid Rajabzadeh,Bing‐Jie Ni,Ho Kyong Shon
出处
期刊:Chemosphere [Elsevier BV]
卷期号:350: 140999-140999 被引量:9
标识
DOI:10.1016/j.chemosphere.2023.140999
摘要

In this study, machine learning-based models were established for layer-by-layer (LBL) nanofiltration (NF) membrane performance prediction and polymer candidate exploration. Four different models, i.e., linear, random forest (RF), boosted tree (BT), and eXtreme Gradient Boosting (XGBoost), were formed, and membrane performance prediction was determined in terms of membrane permeability and selectivity. The XGBoost exhibited optimal prediction accuracy for membrane permeability (coefficient of determination (R2): 0.99) and membrane selectivity (R2: 0.80). The Shapley Additive exPlanation (SHAP) method was utilized to evaluate the effects of different LBL NF membrane fabrication conditions on membrane performances. The SHAP method was also used to identify the relationships between polymer structure and membrane performance. Polymers were represented by Morgan fingerprint, which is an effective description approach for developing modeling. Based on the SHAP value results, two reference Morgan fingerprints were constructed containing atomic groups with positive contributions to membrane permeability and selectivity. According to the reference Morgan fingerprint, 204 potential polymers were explored from the largest polymer database (PoLyInfo). By calculating the similarities between each potential polymer and both reference Morgan fingerprints, 23 polymer candidates were selected and could be further used for LBL NF membrane fabrication with the potential for providing good membrane performance. Overall, this work provided new ways both for LBL NF membrane performance prediction and high-performance polymer candidate exploration. The source code for the models and algorithms used in this study is publicly available to facilitate replication and further research. https://github.com/wangliwfsd/LLNMPP/
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助chenyue233采纳,获得10
2秒前
平常的德天完成签到,获得积分10
16秒前
方白秋完成签到,获得积分0
40秒前
42秒前
糟糕的翅膀完成签到,获得积分10
1分钟前
糖果苏扬完成签到 ,获得积分10
1分钟前
1分钟前
Hello应助科研通管家采纳,获得10
1分钟前
小朱马发布了新的文献求助10
2分钟前
华仔应助小朱马采纳,获得10
2分钟前
2分钟前
cfy完成签到,获得积分10
3分钟前
紫熊完成签到,获得积分10
3分钟前
无花果应助科研通管家采纳,获得10
3分钟前
负责从丹完成签到,获得积分10
3分钟前
负责从丹发布了新的文献求助10
4分钟前
狂野的含烟完成签到 ,获得积分10
4分钟前
sissiarno应助科研通管家采纳,获得200
5分钟前
一盏壶完成签到,获得积分10
6分钟前
gmc完成签到 ,获得积分10
6分钟前
苗苗完成签到 ,获得积分10
6分钟前
萝卜猪完成签到,获得积分10
6分钟前
sadh2完成签到 ,获得积分10
7分钟前
leo完成签到 ,获得积分10
7分钟前
Owen应助ldtbest0525采纳,获得10
7分钟前
8分钟前
chenyue233发布了新的文献求助10
8分钟前
大医仁心完成签到 ,获得积分10
8分钟前
Chen完成签到 ,获得积分10
9分钟前
南星完成签到 ,获得积分10
9分钟前
10分钟前
迷人书蝶完成签到 ,获得积分10
10分钟前
11发布了新的文献求助30
10分钟前
10分钟前
ldtbest0525发布了新的文献求助10
10分钟前
ldtbest0525完成签到,获得积分10
10分钟前
10分钟前
菠萝发布了新的文献求助10
11分钟前
小二郎应助菠萝采纳,获得10
11分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5255238
求助须知:如何正确求助?哪些是违规求助? 4417869
关于积分的说明 13751833
捐赠科研通 4290825
什么是DOI,文献DOI怎么找? 2354400
邀请新用户注册赠送积分活动 1350997
关于科研通互助平台的介绍 1311445