Machine learning for layer-by-layer nanofiltration membrane performance prediction and polymer candidate exploration

纳滤 图层(电子) 聚合物 材料科学 化学工程 化学 工程类 纳米技术 复合材料 生物化学
作者
Chen Wang,Li Wang,Hanwei Yu,Allan Soo,Zhining Wang,Saeid Rajabzadeh,Bing‐Jie Ni,Ho Kyong Shon
出处
期刊:Chemosphere [Elsevier BV]
卷期号:350: 140999-140999 被引量:6
标识
DOI:10.1016/j.chemosphere.2023.140999
摘要

In this study, machine learning-based models were established for layer-by-layer (LBL) nanofiltration (NF) membrane performance prediction and polymer candidate exploration. Four different models, i.e., linear, random forest (RF), boosted tree (BT), and eXtreme Gradient Boosting (XGBoost), were formed, and membrane performance prediction was determined in terms of membrane permeability and selectivity. The XGBoost exhibited optimal prediction accuracy for membrane permeability (coefficient of determination (R2): 0.99) and membrane selectivity (R2: 0.80). The Shapley Additive exPlanation (SHAP) method was utilized to evaluate the effects of different LBL NF membrane fabrication conditions on membrane performances. The SHAP method was also used to identify the relationships between polymer structure and membrane performance. Polymers were represented by Morgan fingerprint, which is an effective description approach for developing modeling. Based on the SHAP value results, two reference Morgan fingerprints were constructed containing atomic groups with positive contributions to membrane permeability and selectivity. According to the reference Morgan fingerprint, 204 potential polymers were explored from the largest polymer database (PoLyInfo). By calculating the similarities between each potential polymer and both reference Morgan fingerprints, 23 polymer candidates were selected and could be further used for LBL NF membrane fabrication with the potential for providing good membrane performance. Overall, this work provided new ways both for LBL NF membrane performance prediction and high-performance polymer candidate exploration. The source code for the models and algorithms used in this study is publicly available to facilitate replication and further research. https://github.com/wangliwfsd/LLNMPP/
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
帅气的藏鸟完成签到,获得积分10
3秒前
小洪俊熙完成签到,获得积分10
4秒前
小杨发布了新的文献求助10
5秒前
JUAN完成签到,获得积分10
6秒前
不信人间有白头完成签到 ,获得积分10
6秒前
明亮的代灵完成签到 ,获得积分10
6秒前
嗯哼完成签到 ,获得积分10
9秒前
liaomr完成签到 ,获得积分10
12秒前
哈哈完成签到 ,获得积分10
13秒前
13秒前
八八九九九1完成签到,获得积分10
13秒前
ZHZ完成签到,获得积分10
14秒前
OeO完成签到 ,获得积分10
15秒前
Xiaoming完成签到,获得积分0
15秒前
哈哈哈发布了新的文献求助10
17秒前
lang完成签到,获得积分10
17秒前
19秒前
忐忑的天真完成签到 ,获得积分10
19秒前
舒适数据线完成签到,获得积分10
20秒前
优雅的千雁完成签到,获得积分10
21秒前
zz完成签到 ,获得积分10
21秒前
没用的三轮完成签到,获得积分10
21秒前
zw完成签到,获得积分10
22秒前
啊哈啊哈额完成签到,获得积分10
23秒前
土豆淀粉完成签到 ,获得积分10
24秒前
25秒前
青黛完成签到 ,获得积分10
28秒前
爱吃蒸蛋完成签到,获得积分10
29秒前
mayberichard完成签到,获得积分10
29秒前
30秒前
火星上莛完成签到 ,获得积分10
31秒前
fanzi完成签到 ,获得积分10
31秒前
31秒前
chinh完成签到,获得积分10
34秒前
unfeeling8完成签到 ,获得积分10
36秒前
JUNE发布了新的文献求助30
36秒前
37秒前
花花2024完成签到 ,获得积分10
39秒前
胖胖橘完成签到 ,获得积分10
40秒前
独指蜗牛完成签到 ,获得积分10
42秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015640
求助须知:如何正确求助?哪些是违规求助? 3555625
关于积分的说明 11318138
捐赠科研通 3288796
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015