已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning for layer-by-layer nanofiltration membrane performance prediction and polymer candidate exploration

纳滤 聚合物 选择性 随机森林 计算机科学 材料科学 生物系统 化学 机器学习 复合材料 生物 有机化学 生物化学 催化作用
作者
Chen Wang,Li Wang,Hanwei Yu,Akishige Seo,Zhining Wang,Saeid Rajabzadeh,Bing‐Jie Ni,Ho Kyong Shon
出处
期刊:Chemosphere [Elsevier]
卷期号:350: 140999-140999
标识
DOI:10.1016/j.chemosphere.2023.140999
摘要

In this study, machine learning-based models were established for layer-by-layer (LBL) nanofiltration (NF) membrane performance prediction and polymer candidate exploration. Four different models, i.e., linear, random forest (RF), boosted tree (BT), and eXtreme Gradient Boosting (XGBoost), were formed, and membrane performance prediction was determined in terms of membrane permeability and selectivity. The XGBoost exhibited optimal prediction accuracy for membrane permeability (coefficient of determination (R2): 0.99) and membrane selectivity (R2: 0.80). The Shapley Additive exPlanation (SHAP) method was utilized to evaluate the effects of different LBL NF membrane fabrication conditions on membrane performances. The SHAP method was also used to identify the relationships between polymer structure and membrane performance. Polymers were represented by Morgan fingerprint, which is an effective description approach for developing modeling. Based on the SHAP value results, two reference Morgan fingerprints were constructed containing atomic groups with positive contributions to membrane permeability and selectivity. According to the reference Morgan fingerprint, 204 potential polymers were explored from the largest polymer database (PoLyInfo). By calculating the similarities between each potential polymer and both reference Morgan fingerprints, 23 polymer candidates were selected and could be further used for LBL NF membrane fabrication with the potential for providing good membrane performance. Overall, this work provided new ways both for LBL NF membrane performance prediction and high-performance polymer candidate exploration. The source code for the models and algorithms used in this study is publicly available to facilitate replication and further research. https://github.com/wangliwfsd/LLNMPP/
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温婉的惜文完成签到 ,获得积分10
1秒前
3秒前
SciGPT应助优秀寻云采纳,获得10
3秒前
5秒前
5秒前
小刷子完成签到 ,获得积分10
5秒前
7秒前
9秒前
幽默赛君完成签到 ,获得积分10
13秒前
TJY完成签到,获得积分10
14秒前
20秒前
21秒前
嗯哼举报杨阳洋求助涉嫌违规
24秒前
25秒前
本本完成签到 ,获得积分10
26秒前
27秒前
27秒前
哈哈带发布了新的文献求助10
28秒前
Arzu完成签到,获得积分20
30秒前
31秒前
丘比特应助小小的飞机采纳,获得10
33秒前
YOYO发布了新的文献求助10
35秒前
平常的若雁完成签到,获得积分10
35秒前
38秒前
今后应助尼古拉斯赵四采纳,获得10
38秒前
40秒前
xujiejiuxi发布了新的文献求助10
41秒前
范丞丞完成签到 ,获得积分10
41秒前
害羞龙猫完成签到 ,获得积分10
41秒前
小胡爱科研完成签到 ,获得积分10
43秒前
45秒前
50秒前
爱学习的鼠鼠完成签到,获得积分10
51秒前
52秒前
追寻哲瀚完成签到 ,获得积分10
58秒前
59秒前
所所应助带你去喝雪碧采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234488
求助须知:如何正确求助?哪些是违规求助? 2880839
关于积分的说明 8217229
捐赠科研通 2548429
什么是DOI,文献DOI怎么找? 1377749
科研通“疑难数据库(出版商)”最低求助积分说明 647959
邀请新用户注册赠送积分活动 623314