Interpretable Machine Learning-Based Predictive Modeling of Patient Outcomes Following Cardiac Surgery

医学 心脏外科 机械通风 冲程(发动机) 心理干预 外科 机器学习 重症监护医学 内科学 计算机科学 机械工程 精神科 工程类
作者
Adeel Abbasi,Cindy Li,Max Dekle,C. Bermúdez,Daniel Brodie,Frank W. Sellke,Neel R. Sodha,Corey E. Ventetuolo,Carsten Eickhoff
出处
期刊:The Journal of Thoracic and Cardiovascular Surgery [American Association for Thoracic Surgery]
标识
DOI:10.1016/j.jtcvs.2023.11.034
摘要

Objective The clinical applicability of machine learning predictions of patient outcomes following cardiac surgery remains unclear. We applied machine learning to predict patient outcomes associated with high morbidity and mortality after cardiac surgery and identified the importance of variables to the derived model’s performance. Methods We applied machine learning to the Society of Thoracic Surgeons Adult Cardiac Surgery Database to predict post-operative hemorrhage requiring re-operation, venous thromboembolism and stroke. We used permutation feature importance to identify variables important to model performance and a misclassification analysis to study the limitations of the model. Results The study dataset included 662,772 subjects who had cardiac surgery between 2015 and 2017 and 240 variables. Hemorrhage requiring re-operation, venous thromboembolism and stroke occurred in 2.9%, 1.2% and 2.0% of subjects respectively. The model performed remarkably well at predicting all three complications (AUC 0.92-0.97). Pre- and intra-operative variables were not important to model performance. Instead, performance for the prediction of all three outcomes was driven primarily by several post-operative variables, including known risk factors for the complications such as mechanical ventilation and new-onset of post-operative arrhythmias. Many of the post-operative variables important to model performance also increased the risk of subject misclassification, indicating internal validity. Conclusions A machine learning model accurately and reliably predicts patient outcomes following cardiac surgery. Post-operative, as opposed to pre- or intra-operative variables, are important to model performance. Interventions targeting this period including minimizing the duration of mechanical ventilation and early treatment of new-onset post-operative arrhythmias may help lower the risk of these complications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
积极的忆曼完成签到,获得积分10
3秒前
3秒前
牛人完成签到,获得积分10
3秒前
随影相伴完成签到 ,获得积分10
3秒前
曹中明完成签到,获得积分10
4秒前
落星完成签到,获得积分10
5秒前
一叶知秋发布了新的文献求助30
6秒前
充电宝应助Amy采纳,获得30
9秒前
张瑞雪完成签到 ,获得积分10
10秒前
骄傲慕尼黑完成签到,获得积分10
10秒前
共享精神应助程程采纳,获得10
10秒前
繁荣的柏柳完成签到,获得积分10
11秒前
贾小闲完成签到,获得积分10
11秒前
YKH完成签到,获得积分10
12秒前
西哈哈完成签到,获得积分20
12秒前
多边形完成签到 ,获得积分10
12秒前
jackie完成签到,获得积分10
12秒前
文剑武书生完成签到,获得积分10
12秒前
温暖宛筠完成签到,获得积分10
13秒前
physicalproblem完成签到,获得积分10
13秒前
14秒前
cathy完成签到,获得积分10
16秒前
16秒前
沛蓝完成签到,获得积分10
16秒前
星辰大海应助凶狠的猎豹采纳,获得10
17秒前
刀笔吏完成签到,获得积分10
17秒前
liuliuliu发布了新的文献求助30
18秒前
不舍天真完成签到,获得积分10
19秒前
李爱国应助Soundyxxa采纳,获得10
21秒前
怕黑凤妖完成签到 ,获得积分10
21秒前
caozhi完成签到,获得积分10
22秒前
浮三白完成签到,获得积分10
23秒前
老朱完成签到,获得积分10
24秒前
打打应助cathy采纳,获得10
24秒前
24秒前
yuki完成签到 ,获得积分10
25秒前
majf完成签到,获得积分10
26秒前
28秒前
李_小_八完成签到,获得积分10
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134060
求助须知:如何正确求助?哪些是违规求助? 2784861
关于积分的说明 7769107
捐赠科研通 2440349
什么是DOI,文献DOI怎么找? 1297368
科研通“疑难数据库(出版商)”最低求助积分说明 624959
版权声明 600792