亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Interpretable Machine Learning-Based Predictive Modeling of Patient Outcomes Following Cardiac Surgery

医学 心脏外科 机械通风 冲程(发动机) 心理干预 外科 机器学习 重症监护医学 内科学 计算机科学 机械工程 精神科 工程类
作者
Adeel Abbasi,Cindy Li,Max Dekle,C. Bermúdez,Daniel Brodie,Frank W. Sellke,Neel R. Sodha,Corey E. Ventetuolo,Carsten Eickhoff
出处
期刊:The Journal of Thoracic and Cardiovascular Surgery [American Association for Thoracic Surgery]
卷期号:169 (1): 114-123.e28 被引量:4
标识
DOI:10.1016/j.jtcvs.2023.11.034
摘要

Objective The clinical applicability of machine learning predictions of patient outcomes following cardiac surgery remains unclear. We applied machine learning to predict patient outcomes associated with high morbidity and mortality after cardiac surgery and identified the importance of variables to the derived model’s performance. Methods We applied machine learning to the Society of Thoracic Surgeons Adult Cardiac Surgery Database to predict post-operative hemorrhage requiring re-operation, venous thromboembolism and stroke. We used permutation feature importance to identify variables important to model performance and a misclassification analysis to study the limitations of the model. Results The study dataset included 662,772 subjects who had cardiac surgery between 2015 and 2017 and 240 variables. Hemorrhage requiring re-operation, venous thromboembolism and stroke occurred in 2.9%, 1.2% and 2.0% of subjects respectively. The model performed remarkably well at predicting all three complications (AUC 0.92-0.97). Pre- and intra-operative variables were not important to model performance. Instead, performance for the prediction of all three outcomes was driven primarily by several post-operative variables, including known risk factors for the complications such as mechanical ventilation and new-onset of post-operative arrhythmias. Many of the post-operative variables important to model performance also increased the risk of subject misclassification, indicating internal validity. Conclusions A machine learning model accurately and reliably predicts patient outcomes following cardiac surgery. Post-operative, as opposed to pre- or intra-operative variables, are important to model performance. Interventions targeting this period including minimizing the duration of mechanical ventilation and early treatment of new-onset post-operative arrhythmias may help lower the risk of these complications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Karol完成签到,获得积分10
1秒前
1秒前
兰兰发布了新的文献求助10
3秒前
四月完成签到,获得积分10
3秒前
lekins发布了新的文献求助10
6秒前
科研通AI6.1应助ainan采纳,获得10
7秒前
大个应助啵子采纳,获得10
8秒前
23秒前
科研通AI6.1应助lekins采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
25秒前
32秒前
ok关闭了ok文献求助
34秒前
38秒前
学术熊完成签到,获得积分20
39秒前
学术熊发布了新的文献求助10
42秒前
善学以致用应助jdjf采纳,获得10
50秒前
风中沛柔完成签到,获得积分10
52秒前
优秀冰真完成签到,获得积分10
56秒前
1分钟前
Ray完成签到,获得积分10
1分钟前
jdjf发布了新的文献求助10
1分钟前
jdjf完成签到,获得积分10
1分钟前
enen完成签到,获得积分20
1分钟前
小状元完成签到 ,获得积分10
1分钟前
1分钟前
吊炸天完成签到 ,获得积分10
1分钟前
阿斯顿马丁完成签到,获得积分10
1分钟前
1分钟前
橘子发布了新的文献求助10
2分钟前
西风惊绿完成签到,获得积分10
2分钟前
zkk完成签到 ,获得积分10
2分钟前
ok发布了新的文献求助10
2分钟前
李健应助Kevin采纳,获得10
2分钟前
2分钟前
爆米花应助科研通管家采纳,获得10
2分钟前
传奇3应助科研通管家采纳,获得10
2分钟前
Ava应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780136
求助须知:如何正确求助?哪些是违规求助? 5652435
关于积分的说明 15452791
捐赠科研通 4910922
什么是DOI,文献DOI怎么找? 2643112
邀请新用户注册赠送积分活动 1590741
关于科研通互助平台的介绍 1545245