Interpretable Machine Learning-Based Predictive Modeling of Patient Outcomes Following Cardiac Surgery

医学 心脏外科 机械通风 冲程(发动机) 心理干预 外科 机器学习 重症监护医学 内科学 计算机科学 机械工程 精神科 工程类
作者
Adeel Abbasi,Cindy Li,Max Dekle,C. Bermúdez,Daniel Brodie,Frank W. Sellke,Neel R. Sodha,Corey E. Ventetuolo,Carsten Eickhoff
出处
期刊:The Journal of Thoracic and Cardiovascular Surgery [Elsevier BV]
卷期号:169 (1): 114-123.e28
标识
DOI:10.1016/j.jtcvs.2023.11.034
摘要

Objective The clinical applicability of machine learning predictions of patient outcomes following cardiac surgery remains unclear. We applied machine learning to predict patient outcomes associated with high morbidity and mortality after cardiac surgery and identified the importance of variables to the derived model’s performance. Methods We applied machine learning to the Society of Thoracic Surgeons Adult Cardiac Surgery Database to predict post-operative hemorrhage requiring re-operation, venous thromboembolism and stroke. We used permutation feature importance to identify variables important to model performance and a misclassification analysis to study the limitations of the model. Results The study dataset included 662,772 subjects who had cardiac surgery between 2015 and 2017 and 240 variables. Hemorrhage requiring re-operation, venous thromboembolism and stroke occurred in 2.9%, 1.2% and 2.0% of subjects respectively. The model performed remarkably well at predicting all three complications (AUC 0.92-0.97). Pre- and intra-operative variables were not important to model performance. Instead, performance for the prediction of all three outcomes was driven primarily by several post-operative variables, including known risk factors for the complications such as mechanical ventilation and new-onset of post-operative arrhythmias. Many of the post-operative variables important to model performance also increased the risk of subject misclassification, indicating internal validity. Conclusions A machine learning model accurately and reliably predicts patient outcomes following cardiac surgery. Post-operative, as opposed to pre- or intra-operative variables, are important to model performance. Interventions targeting this period including minimizing the duration of mechanical ventilation and early treatment of new-onset post-operative arrhythmias may help lower the risk of these complications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
生动丹珍发布了新的文献求助30
刚刚
刚刚
刚刚
CHENCHENG完成签到 ,获得积分10
1秒前
chuyinweilai发布了新的文献求助10
1秒前
easton驳回了英姑应助
1秒前
1秒前
01发布了新的文献求助10
2秒前
2秒前
十字花科完成签到,获得积分10
2秒前
lyn完成签到,获得积分10
3秒前
一盒火柴完成签到,获得积分10
3秒前
3秒前
4秒前
杨傲多完成签到,获得积分10
4秒前
热狗完成签到 ,获得积分10
4秒前
xunxunmimi完成签到,获得积分10
4秒前
朱豪豪完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
5秒前
双予完成签到,获得积分20
5秒前
5秒前
6秒前
HAHAH发布了新的文献求助10
6秒前
7秒前
sophiea发布了新的文献求助10
7秒前
8秒前
wgm完成签到,获得积分10
8秒前
望山云雾发布了新的文献求助10
8秒前
林飞云发布了新的文献求助10
8秒前
aaa发布了新的文献求助10
8秒前
所所应助琉璃采纳,获得10
8秒前
8秒前
Hello应助Liu采纳,获得10
9秒前
zcx完成签到,获得积分20
9秒前
奥丁不言语完成签到 ,获得积分10
9秒前
风趣翠霜完成签到,获得积分10
9秒前
周一完成签到 ,获得积分10
9秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950593
求助须知:如何正确求助?哪些是违规求助? 3495971
关于积分的说明 11080135
捐赠科研通 3226361
什么是DOI,文献DOI怎么找? 1783812
邀请新用户注册赠送积分活动 867916
科研通“疑难数据库(出版商)”最低求助积分说明 800977