Interpretable Machine Learning-Based Predictive Modeling of Patient Outcomes Following Cardiac Surgery

医学 心脏外科 机械通风 冲程(发动机) 心理干预 外科 机器学习 重症监护医学 内科学 计算机科学 机械工程 精神科 工程类
作者
Adeel Abbasi,Cindy Li,Max Dekle,C. Bermúdez,Daniel Brodie,Frank W. Sellke,Neel R. Sodha,Corey E. Ventetuolo,Carsten Eickhoff
出处
期刊:The Journal of Thoracic and Cardiovascular Surgery [Elsevier BV]
卷期号:169 (1): 114-123.e28 被引量:4
标识
DOI:10.1016/j.jtcvs.2023.11.034
摘要

Objective The clinical applicability of machine learning predictions of patient outcomes following cardiac surgery remains unclear. We applied machine learning to predict patient outcomes associated with high morbidity and mortality after cardiac surgery and identified the importance of variables to the derived model’s performance. Methods We applied machine learning to the Society of Thoracic Surgeons Adult Cardiac Surgery Database to predict post-operative hemorrhage requiring re-operation, venous thromboembolism and stroke. We used permutation feature importance to identify variables important to model performance and a misclassification analysis to study the limitations of the model. Results The study dataset included 662,772 subjects who had cardiac surgery between 2015 and 2017 and 240 variables. Hemorrhage requiring re-operation, venous thromboembolism and stroke occurred in 2.9%, 1.2% and 2.0% of subjects respectively. The model performed remarkably well at predicting all three complications (AUC 0.92-0.97). Pre- and intra-operative variables were not important to model performance. Instead, performance for the prediction of all three outcomes was driven primarily by several post-operative variables, including known risk factors for the complications such as mechanical ventilation and new-onset of post-operative arrhythmias. Many of the post-operative variables important to model performance also increased the risk of subject misclassification, indicating internal validity. Conclusions A machine learning model accurately and reliably predicts patient outcomes following cardiac surgery. Post-operative, as opposed to pre- or intra-operative variables, are important to model performance. Interventions targeting this period including minimizing the duration of mechanical ventilation and early treatment of new-onset post-operative arrhythmias may help lower the risk of these complications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
池番完成签到,获得积分20
1秒前
1秒前
浮游应助捏捏捏采纳,获得10
1秒前
3秒前
4秒前
bdJ发布了新的文献求助10
4秒前
zhzh0618完成签到,获得积分10
4秒前
浮游应助陌路采纳,获得10
4秒前
嗯嗯完成签到,获得积分10
5秒前
wang完成签到 ,获得积分10
6秒前
池番发布了新的文献求助10
6秒前
kai发布了新的文献求助20
7秒前
Orange应助benben采纳,获得10
8秒前
8秒前
领导范儿应助阔达碧空采纳,获得10
8秒前
开庆完成签到,获得积分10
9秒前
Amelia发布了新的文献求助10
9秒前
哈基米德应助宗剑采纳,获得20
9秒前
虚心的冷松完成签到,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
开朗寇发布了新的文献求助10
11秒前
11秒前
科研通AI5应助Hbobo采纳,获得10
12秒前
希望天下0贩的0应助Barry采纳,获得10
12秒前
12秒前
13秒前
甜蜜的白风完成签到,获得积分10
14秒前
神勇难胜发布了新的文献求助10
14秒前
14秒前
AN完成签到,获得积分10
15秒前
15秒前
呼了个呼完成签到,获得积分10
16秒前
lbc完成签到,获得积分10
16秒前
脑洞疼应助钉大帅采纳,获得10
17秒前
湘湘发布了新的文献求助10
17秒前
铁头霸霸完成签到,获得积分10
17秒前
apathy发布了新的文献求助10
18秒前
彪壮的傥完成签到,获得积分10
19秒前
19秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5131642
求助须知:如何正确求助?哪些是违规求助? 4333372
关于积分的说明 13500477
捐赠科研通 4170310
什么是DOI,文献DOI怎么找? 2286231
邀请新用户注册赠送积分活动 1287130
关于科研通互助平台的介绍 1228164