组织工程
壳聚糖
干细胞
纳米纤维
表面改性
表面工程
细胞
纳米技术
材料科学
生物物理学
化学
细胞生物学
生物医学工程
化学工程
生物
工程类
生物化学
作者
Laurens Léger,Sheida Aliakbarshirazi,Pegah Zahedifar,J.G. Aalders,Pascal Van Der Voort,Nathalie De Geyter,Rino Morent,Jolanda van Hengel,Rouba Ghobeira
标识
DOI:10.1016/j.apsusc.2024.159680
摘要
Pluripotent stem cell (PSC)-derived cardiomyocytes offer vast potential in heart failure therapy, yet their immaturity poses challenges. To solve this issue, a multifaceted approach combining exclusive biochemical/topographical cues in the design of substrates mimicking the cardiac extracellular matrix was followed. Firstly, polycaprolactone (PCL)/chitosan nanofibers were electrospun in a random and aligned fashion, thus forming myocardium-like constructs. The scaffolds were then subjected to Ar and N2 dielectric barrier discharge treatments, thus further improving their surface properties. The Ar plasma incorporated oxygen-containing functionalities onto the nanofibers surface with an additional implantation of nitrogen-containing groups upon N2 plasma treatment, which both enhanced fibers’ wettability. No topographical/dimensional damages were detected post-plasma treatments, except for a slight decrease in the surface roughness of the aligned nanofibers, which led to a decrease in their tensile stress. Both plasmas significantly enhanced the adhesion of PSC-derived cardiomyocytes that displayed more circular versus highly elongated body/nucleus morphologies on random versus aligned nanofibers, respectively. Interestingly, the cell alignment was less pronounced on GeltrexTM-coated nanofibers. Furthermore, increased sarcomere distance and organization were observed on aligned plasma-treated nanofibers, suggesting an enhanced cell maturation. Overall, PCL/chitosan nanofibers with aligned orientation and plasma-induced surface chemistry hold promise in cardiac tissue engineering applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI